精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C所对的边,若acosB-bcosA=
3
5
c,则tan(A-B)的最大值为
3
4
3
4
分析:利用正弦定理,将已知等式化简整理得sinAcosB=4sinBcosA,两边同除以cosAcosB,得到tanA=4tanB.利用两角差的正切公式,得tan(A-B)=
3tanB
1+4tan2B
=
3
1
tanB
+4tanB
,最后利用基本不等式求最值,可得当且仅当tanB=
1
2
时,tan(A-B)的最大值为
3
4
解答:解:∵acosB-bcosA=
3
5
c,
∴结合正弦定理,得sinAcosB-sinBcosA=
3
5
sinC,
∵C=π-(A+B),得sinC=sin(A+B)
∴sinAcosB-sinBcosA=
3
5
(sinAcosB+cosAsinB)
整理,得sinAcosB=4sinBcosA,同除以cosAcosB,得tanA=4tanB
由此可得tan(A-B)=
tanA-tanB
1+tanAtanB
=
3tanB
1+4tan2B
=
3
1
tanB
+4tanB

∵A、B是三角形内角,且tanA与tanB同号
∴A、B都是锐角,即tanA>0,tanB>0
1
tanB
+4tanB≥2
1
tanB
•4tanB
=4
∴tan(A-B)=
3
1
tanB
+4tanB
3
4
,当且仅当
1
tanB
=4tanB,即tanB=
1
2
时,tan(A-B)的最大值为
3
4

故答案为:
3
4
点评:本题已知三角形边角的一个关系式,求tan(A-B)的最大值,着重考查了正弦定理、两角差的正切公式和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案