精英家教网 > 高中数学 > 题目详情
2.写出下列不等式的解集
(1)tanx-1≤0.
(2)-1≤tanx<$\sqrt{3}$.

分析 (1)根据正切函数的图象与性质解不等式即可;
(2)根据正切函数的图象与性质求出不等式的解集.

解答 解:(1)tanx-1≤0,
∴tanx≤1,
解得-$\frac{π}{2}$+kπ<x≤$\frac{π}{4}$+kπ,k∈Z,
∴不等式的解集是{x|-$\frac{π}{2}$+kπ<x≤$\frac{π}{4}$+kπ,k∈Z};
(2)-1≤tanx<$\sqrt{3}$,
解得-$\frac{π}{4}$+kπ≤x<$\frac{π}{3}$+kπ,k∈Z,
∴不等式的解集是{x|-$\frac{π}{4}$+kπ≤x<$\frac{π}{3}$+kπ,k∈Z}.

点评 本题考查了利用正切函数的图象与性质解不等式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知矩形ABCD的周长为18,把它沿图中的虚线折成正四棱柱,则这个正四棱柱的外接球表面积的最小值为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列五个命题:
①如果m⊥α,n∥β,α∥β,那么m⊥n;
②如果m∥α,n∥β,m⊥n,那么α∥β;
③如果m⊥α,n⊥β,m⊥n,那么α⊥β;
④如果m⊥α,n∥β,m⊥n,那么α∥β;
⑤如果m∥α,m∥β,α∩β=n,那么m∥n.
其中正确的命题有①③⑤.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-alnx,g(x)=(a-2)x
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2
(1)求满足条件的最小正整数a的值;
(2)求证:F′($\frac{{x}_{1}+{x}_{2}}{2}$)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tanx=3,tany=2,则tan(x-y)的值是$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2分别是离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,经过点F2且与x轴垂直的直线l被椭圆截得的弦长为$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是C上的两个动点,线段AB的中垂线与C交于P、Q两点,线段AB的中点M在直线l上,求$\overrightarrow{{F}_{1}P}•\overrightarrow{{F}_{1}Q}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P($\sqrt{3}$,1),Q(cosx,sinx),O为坐标原点,函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(1)求函数f(x)的最小值及此时x的值;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{3\sqrt{3}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,已知长方形ABCD中,BC=2AB,△EFG与△HIJ均为等边三角形,F、H、G在AD上,I、E、J在BC上,连接FI,GJ,且AB∥FI∥GJ,若AF=GD,则向长方形ABCD内投掷一个点,该点落在阴影区域内的概率为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知cosα-sinα=$\frac{5\sqrt{2}}{13}$,α∈(0,$\frac{π}{4}$).
(1)求sinαcosα的值;
(2)求$\frac{cos2α}{cos(\frac{π}{4}+α)}$的值.

查看答案和解析>>

同步练习册答案