精英家教网 > 高中数学 > 题目详情
13.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列五个命题:
①如果m⊥α,n∥β,α∥β,那么m⊥n;
②如果m∥α,n∥β,m⊥n,那么α∥β;
③如果m⊥α,n⊥β,m⊥n,那么α⊥β;
④如果m⊥α,n∥β,m⊥n,那么α∥β;
⑤如果m∥α,m∥β,α∩β=n,那么m∥n.
其中正确的命题有①③⑤.(填写所有正确命题的编号)

分析 在①中,得到m⊥β,从而m⊥n;在②中,α与β平行或相交;在③中,由面面垂直的判定定理得α⊥β;在④中,α与β平行或相交;在⑤中,由线面平行的性质定理得m∥n.

解答 解:由α,β是两个不同的平面,m,n是两条不同的直线,知:
在①中,若m⊥α,α∥β,则m⊥β,
又因为n∥β,则m⊥n,故①正确;
在②中,如果m∥α,n∥β,m⊥n,那么α与β平行或相交,故②错误;
在③中,如果m⊥α,n⊥β,m⊥n,则由面面垂直的判定定理得α⊥β,故③正确;
在④中,如果m⊥α,n∥β,m⊥n,那么α与β平行或相交,故④错误;
在⑤中,如果m∥α,m∥β,α∩β=n,那么由线面平行的性质定理得m∥n,故⑤正确.
故答案为:①③⑤.

点评 本题命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.椭圆6x2+y2=36的长轴端点坐标为(  )
A.(-1,0),(1,0)B.(0,-6),(0,6)C.(-6,0),(6,0)D.$(-\sqrt{6},0),(\sqrt{6},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn=3n2+8n,数列{bn}是等差数列,且an=bn+bn+1
(1)求数列{an},{bn}的通项公式an,bn
(2)设cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$,且λ>$\frac{{{c_{n+1}}}}{c_n}$对任意的n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在数列{an}中,a1=2,an+1=an+lg(1+$\frac{1}{n}$),则an的值为(  )
A.2+lgnB.2+(n-1)lgnC.2+nlgnD.1+nlgn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为研究造成死亡的结核病类型与性别的关系,取得如下资料:
男 性女 性
呼吸系统结核3 5341 319
能造成死亡的结核病类型270252
由此你能得出什么结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若圆的一条直径的两个端点分别是(2,0)和(2,-2),则此圆的方程是(  )
A.x2+y2-4x+2y+4=0B.x2+y2-4x-2y-4=0C.x2+y2-4x+2y-4=0D.x2+y2+4x+2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=tan\frac{x}{4}•{cos^2}\frac{x}{4}-2{cos^2}({\frac{x}{4}+\frac{π}{12}})+1$.
(Ⅰ)求f(x)的定义域及最小正周期;
(Ⅱ)求f(x)在区间[-π,0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.写出下列不等式的解集
(1)tanx-1≤0.
(2)-1≤tanx<$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{a}^{2}}$=1与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1焦点相同,则a=$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案