【题目】已知四棱柱的底面是边长为2的菱形,且,⊥平面,,设为的中点.
(1)求证:⊥平面;
(2)点在线段上,且平面,求平面和平面所成锐角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)由侧棱可知,该棱柱为直四棱柱,所以且交线为,又底面为菱形且,所以为等比三角形,由于为中点,所以,所以,所以,又根据侧面为矩形,且,,所以为等腰直角三角形,即,又因为,所以;(2)取中点,连接,由为等比三角形易知,则,以所在直线分别为轴建立如图的空间直角坐标系,根据第(1)问可知,为平面的法向量,由于平面,所以,于是可以求出点的坐标,然后求出平面的法向量,将平面与平面所成角的余弦转化成两个法向量成角余弦值,即可求解.
试题解析:(1)证明:由已知该四棱柱为直四棱柱,且△为等边三角形,⊥,
所以⊥平面,故⊥.
因为△的三边长分别为,,故△为等腰直角三角形,
所以⊥,结合⊥知:⊥平面.
(2)解:取中点,则由△为等边三角形知⊥,从而⊥.
以,,为坐标轴,建立如图所示的坐标系,此时,,,,,.设,
由上面的讨论知平面的法向量为,
由于平面,故平面,所以,故,
故,所以,故,
设平面的法向量为,,,
由知取,,,故.
设平面和平面所成锐角为,则,
即平面和平面所成锐角的余弦值为.
科目:高中数学 来源: 题型:
【题目】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 2.4 | 1.5 | 0.6 | 1.4 | 2.4 | 1.6 | 0.6 | 1.5 |
(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从
①, ②,③
中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为,如图所示,为的两个端点,测得点到的距离分别为5千米和40千米,点到的距离分别为20千米和2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数(其中为常数)模型.
(1)求的值;
(2)设公路与曲线相切于点,的横坐标为.
①请写出公路长度的函数解析式,并写出其定义域;
②当为何值时,公路的长度最短?求出最短长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体中,,是棱上的一点.
(1)求证:平面;
(2)求证:;
(3)若是棱的中点,在棱上是否存在点,使得平面?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,且在上单调递增,求实数的取值范围;
(2)是否存在实数,使得函数在上的最小值为1?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)设函数, .
(1)证明:函数在上为增函数;
(2)若方程有且只有两个不同的实数根,求实数的值.
(B)已知函数.
(1)求函数的最小值;
(2)若存在唯一实数,使得成立,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆的离心率为, 是椭圆的右焦点, 的斜率为, 为坐标原点.
(1)求椭圆的方程;
(2)设过点的动直线与交于, 两点,当面积最大时,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)经过点(平面直角坐标系中点)作直线交曲线于, 两点,若恰好为线段的三等分点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)求证:曲线在点处的切线过定点;
(2)若是在区间上的极大值,但不是最大值,求实数的取值范围;
(3)求证:对任意给定的正数 ,总存在,使得在上为单调函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com