精英家教网 > 高中数学 > 题目详情
附加题:
已知函数f(x)=x3+ax2+
3
2
x+
3
2
a
(a为实数),
(1)求不等式f′(x)>
3
2
-ax
的解集;
(2)若f′(1)=0,①求函数的单调区间;②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<
5
16
恒成立.
(1)不等式可化为x(x+a)>0,
当a>0时,解集为{x|x>0或x<-a};
当a=0时,解集为{x|x≠0};当a<0时,解集为{x|x>-a或x<0};
(2)∵f'(-1)=0,∴3-2a+
3
2
=0,a=
9
4

f′(x)=3x2+
9
2
x+
3
2
=3(x+
1
2
)(x+1),由f′(x)>0,x<-1或x>-
1
2

①由f′(x)<0,-1<x<-
1
2

∴f(x)的单调递增区间是(-∞,-1),(-
1
2
,+∞)
;单调减区间为(-1,-
1
2
)
(10分)
②由上知,f(x)的单调递增区间是(-∞,-1),(-
1
2
,+∞)
;单调递减区间为(-1,-
1
2
)

易知f(x)在[-1,0]上的最大值M=
27
8
,最小值m=
49
16
(12分)
∴对任意x1x2∈(-1,0),恒有|f(x1)-f(x2)|<M-m=
27
8
-
49
16
=
5
16
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

附加题:
已知函数f(x)=x3+ax2+
3
2
x+
3
2
a
(a为实数),
(1)求不等式f′(x)>
3
2
-ax
的解集;
(2)若f′(1)=0,①求函数的单调区间;②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<
5
16
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知函数f(x)=x2-2kx+k+1.
(Ⅰ)若函数在区间[1,2]上有最小值-5,求k的值.
(Ⅱ)若同时满足下列条件①函数f(x)在区间D上单调;②存在区间[a,b]⊆D使得f(x)在[a,b]上的值域也为[a,b];则称f(x)为区间D上的闭函数,试判断函数f(x)=x2-2kx+k+1是否为区间[k,+∞)上的闭函数?若是求出实数k的取值范围,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:已知函数f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)-
1
2
,(其中ω>0)
,且函数y=f(x)的图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求f(
π
6
)
的值;
(Ⅱ)若函数f(kx+
π
12
)(k>0)
在区间[-
π
6
π
3
]
上单调递增,求实数k的取值范围;
(III)是否存在实数m使方程3f2(x)-f(x)+m=0在(
π
12
π
3
]
内仅有一解,若存在,求出实数m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知函数f(x)=x2+px+q,对于任意θ∈R,有f(sinθ)≤0,且f(sinθ+2)≥0.
(1)求p、q之间的关系式;
(2)求p的取值范围;
(3)如果f(sinθ+2)的最大值是14,求p的值,并求此时f(sinθ)的最小值.

查看答案和解析>>

同步练习册答案