精英家教网 > 高中数学 > 题目详情

【题目】三棱锥P﹣ABC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,则球O的表面积为(
A.13π
B.17π
C.52π
D.68π

【答案】B
【解析】解:取PC的中点O,连结OA、OB∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC,
又∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵PB平面PAB,∴BC⊥PB,
∵OB是Rt△PBC的斜边上的中线,OB= PC.
同理可得:Rt△PAC中,OA= PC,
∴OA=OB=OC=OP= PC,可得P、A、B、C四点在以O为球心的球面上.
Rt△ABC中,AB=BC=2,可得AC=2
Rt△PAC中,PA=3,可得PC=
∴球O的半径R= ,可得球O的表面积为S=4πR2=17π.
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈[ ],都有f(x)﹣2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为.

(1)的单调递增区间;

(2)中,角的对边分别是满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,侧棱 分别为棱的中点, 分别为线段的中点.

(1)求证:直线平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.

(1)求x,y之间的函数关系式y=f(x);
(2)判断∠PCQ的大小是否为定值?并说明理由;
(3)设△PCQ的面积分别为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.

(1)求证:平面C1CD⊥平面ABC;
(2)求证:AC1∥平面CDB1
(3)求三棱锥D﹣CAB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率与双曲线 的离心率互为倒数,且经过点

(1)求椭圆的标准方程;

(2)如图,已知是椭圆上的两个点,线段的中垂线的斜率为且与交于点 为坐标原点,求证: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.
(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设BD=1,求三棱锥D﹣ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)满足以下条件:①定义在正实数集上;②f( )=2;③对任意实数t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求证:对于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4对x∈[a+2,a+ ]恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案