精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率与双曲线 的离心率互为倒数,且经过点

(1)求椭圆的标准方程;

(2)如图,已知是椭圆上的两个点,线段的中垂线的斜率为且与交于点 为坐标原点,求证: 三点共线.

【答案】(1) ;(2)见解析.

【解析】试题分析:(1)由二者离心率互为倒数以及椭圆经过点,建立关于a,b,c的方程组从而得到椭圆的标准方程;(2)因为线段线段的中垂线的斜率为,所以线段所在直线的斜率为,线段所在直线的方程为,联立方程可得,利用韦达定理得到弦的中点的坐标,所以,所以点在定直线上,而两点也在定直线上,所以三点共线.

试题解析:

(1)因为双曲线 的离心率

而椭圆的离心率与双曲线的离心率互为倒数,所以椭圆的离心率为

设椭圆的半焦距为,则.①

又椭圆经过点,所以.②

,③

联立①②③,解得.

所以椭圆的标准方程为.

(2)因为线段线段的中垂线的斜率为,所以线段所在直线的斜率为.

所以可设线段所在直线的方程为

设点

联立,消去,并整理得

显然.

所以

因为,所以

所以点在定直线上,而两点也在定直线上,所以三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)如果a>0,函数在区间 上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式 恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,则(
A.f(x1)<f(x2
B.f(x1)=f(x2
C.f(x1)>f(x2
D.f(x1)与f(x2)的大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,则球O的表面积为(
A.13π
B.17π
C.52π
D.68π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸线一侧处有一个美丽的小岛,某旅游公司为方便游客,在上设立了两个报名点,满足中任意两点间的距离为.公司拟按以下思路运作:先将两处游客分别乘车集中到之间的中转点(异于两点),然后乘同一艘轮游轮前往岛.据统计,每批游客处需发车2辆, 处需发车4辆,每辆汽车每千米耗费元,游轮每千米耗费元.(其中是正常数)设,每批游客从各自报名点到岛所需运输成本为元.

(1) 写出关于的函数表达式,并指出的取值范围;

(2) 问:中转点距离处多远时, 最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数 的定义域为(
A.[0,+∞)
B.[0,16]
C.[0,4]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移 个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0, ]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求f(x)的解析式及定义域;
(2)求f(x)的值域;
(3)若方程f(x)=a2﹣3a+3有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=﹣x3符合条件②的区间[a,b]
(2)判断函数f(x)= 是否为闭函数?并说明理由;
(3)若y=k+ 是闭函数,求实数k的范围.

查看答案和解析>>

同步练习册答案