14£®2013Äê8ÔÂ28ÈÕ-30ÈÕ£¬µÚÁù½ìÔ¥ÉÌ´ó»áÔÚ¡°ÈýÉÌÖ®Ô´¡¢»ªÉÌÖ®¶¼¡±µÄÉÌÇðÊоÙÐУ¬ÎªÁ˸ãºÃ½Ó´ý¹¤×÷£¬´ó»á×éί»áÔÚijѧԺÕÐļÁË12ÃûÄÐÖ¾Ô¸ÕߺÍ18ÃûŮ־ԸÕߣ¬½«Õâ30ÃûÖ¾Ô¸ÕßµÄÉí¸ß±à³ÉÈçËùʾµÄ¾¥Ò¶Í¼£¨µ¥Î»£ºcm£©£®ÈôÉí¸ßÔÚ175cmÒÔÉÏ£¨°üÀ¨175cm£©¶¨ÒåΪ¡°¸ß¸ö×Ó¡±£¬Éí¸ßÔÚ175cmÒÔÏ£¨²»°üÀ¨175cm£©¶¨ÒåΪ¡°·Ç¸ß¸ö×Ó¡±£¬ÇÒÖ»ÓС°Å®¸ß¸ö×Ó¡±²Åµ£ÈΡ°ÀñÒÇС½ã¡±£®
£¨¢ñ£©Èç¹ûÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°¸ß¸ö×Ó¡±Öк͡°·Ç¸ß¸ö×Ó¡±ÖÐÌáÈ¡5ÈË£¬ÔÙ´ÓÕâ5ÈËÖÐÑ¡2ÈË£¬ÄÇôÖÁÉÙÓÐÒ»ÈËÊÇ¡°¸ß¸ö×Ó¡±µÄ¸ÅÂÊÊǶàÉÙ£¿
£¨¢ò£©Èô´ÓËùÓС°¸ß¸ö×Ó¡±ÖÐÑ¡3ÃûÖ¾Ô¸Õߣ¬ÓÃX±íʾËùѡ־ԸÕßÖÐÄܵ£ÈΡ°ÀñÒÇС½ã¡±µÄÈËÊý£¬ÊÔд³öXµÄ·Ö²¼ÁУ¬²¢ÇóXµÄÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©Ïȸù¾Ý¸ù¾Ý¾¥Ò¶Í¼£¬Çó³ö¡°¸ß¸ö×Ó¡±£¬¡°·Ç¸ß¸ö×Ó¡±µÄÈËÊý£¬Ó÷ֲã³éÑùµÄ·½·¨£¬Çó³öÿ¸öÈ˱»³éÖеĸÅÂÊ£¬´Ó¶øÇó³öÑ¡Öеġ°¸ß¸ö×Ó¡±£¬¡°·Ç¸ß¸ö×Ó¡±ÈËÊý£¬½ø¶øÇó³öÏà¶ÔÓ¦µÄ¸ÅÂÊ£»
£¨¢ò£©ÓÉÌâÒâµÃ£ºX=0£¬1£¬2£¬3£¬Çó³öÏà¶ÔÓ¦µÄ¸ÅÂÊ£¬´Ó¶øÐ´³öXµÄ·Ö²¼ÁУ¬XµÄÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©¸ù¾Ý¾¥Ò¶Í¼£¬ÓС°¸ß¸ö×Ó¡±12ÈË£¬¡°·Ç¸ß¸ö×Ó¡±18ÈË£¬
Ó÷ֲã³éÑùµÄ·½·¨£¬Ã¿¸öÈ˱»³éÖеĸÅÂÊÊÇ$\frac{5}{30}$=$\frac{1}{6}$£¬
¡àÑ¡Öеġ°¸ß¸ö×Ó¡±ÓÐ12¡Á$\frac{1}{6}$=2ÈË£¬¡°·Ç¸ß¸ö×Ó¡±ÓÐ18¡Á$\frac{1}{6}$=3ÈË£¬
ÓÃʼþA±íʾ¡°ÖÁÉÙÓÐÒ»Ãû¸ß¸ö×Ó±»Ñ¡ÖС±£¬
ÔòËüµÄ¶ÔÁ¢Ê¼þ$\overline{A}$±íʾ¡°Ã»ÓÐÒ»Ãû¸ß¸ö×Ó±»Ñ¡ÖС±£¬
ÔòP£¨A£©=1-P£¨$\overline{A}$£©=1-$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=1-$\frac{3}{10}$=$\frac{7}{10}$£¬
¡àÖÁÉÙÓÐÒ»ÈËÊÇ¡°¸ß¸ö×Ó¡±µÄ¸ÅÂÊÊÇ$\frac{7}{10}$£»
£¨¢ò£©ÓÉÌâÒâµÃ£ºX=0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{8}^{3}}{{C}_{12}^{3}}$=$\frac{14}{55}$£¬P£¨¦Î=1£©=$\frac{{{C}_{4}^{1}C}_{8}^{2}}{{C}_{12}^{3}}$=$\frac{28}{55}$£¬
P£¨¦Î=2£©=$\frac{{{C}_{4}^{2}C}_{8}^{1}}{{C}_{12}^{3}}$=$\frac{12}{55}$£¬P£¨¦Î=3£©=$\frac{{C}_{4}^{3}}{{C}_{12}^{3}}$=$\frac{1}{55}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐÈçÏ£º

 ¦Î 012 3
 P $\frac{14}{55}$$\frac{28}{55}$ $\frac{12}{55}$ $\frac{1}{55}$
¡àE£¨¦Î£©=0¡Á$\frac{14}{55}$+1¡Á$\frac{28}{55}$+2¡Á$\frac{12}{55}$+3¡Á$\frac{1}{55}$=1£®

µãÆÀ ±¾Ì⿼²ìÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûºÍ·½²î£¬±¾ÌâÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èôf£¨x£©Îª¶¨ÒåÔÚÇø¼äGÉϵÄÈÎÒâÁ½µãx1£¬x2ºÍÈÎÒâʵÊý¦Ë£¨0£¬1£©£¬×ÜÓÐf£¨¦Ëx1+£¨1-¦Ë£©x2£©¡Ü¦Ëf£¨x1£©+£¨1-¦Ë£©f£¨x2£©£¬Ôò³ÆÕâ¸öº¯ÊýΪ¡°ÉϽø¡±º¯Êý£¬ÏÂÁк¯ÊýÊÇ¡°ÉϽø¡±º¯ÊýµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ùf£¨x£©=$\frac{x}{{e}^{x}}$£¬¢Úf£¨x£©=$\sqrt{x}$£¬¢Ûf£¨x£©=$\frac{ln£¨x+1£©}{x}$£¬¢Üf£¨x£©=$\frac{x}{{x}^{2}+1}$£®
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒ¶ÔÈÎÒâʵÊýx£¬ºãÓÐf£¨x+2£©=-f£¨x£©£¬µ±x¡Ê[0£¬2]ʱ£¬f£¨x£©=2x-x2£®
£¨1£©µ±x¡Ê[2£¬4]ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©¼ÆË㣺f£¨0£©+f£¨1£©+f£¨2£©+¡­+f£¨201£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®ÒÑÖªa¡Ùb£¬c=$\sqrt{3}$£¬cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©Çó¡÷ABCµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ABÊÇÔ²OµÄÖ±¾¶£¬C¡¢FΪԲOÉϵ㣬CAÊÇ¡ÏBAFµÄ½Çƽ·ÖÏߣ¬CDÓëÔ²OÇÐÓÚµãCÇÒ½»AFµÄÑÓ³¤ÏßÓÚµãD£¬CM¡ÍAB£¬´¹×ãΪµãM£¬ÇóÖ¤£º
£¨1£©CD¡ÍAD£»
£¨2£©ÈôÔ²OµÄ°ë¾¶Îª1£¬¡ÏBAC=30¡ã£¬ÊÔÇóDF•AMµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòµÄij×ÓÇø¼äÉÏÂú×ãf£¨x£©=$\frac{1}{¦Ë}f£¨{x-¦Ë}£©$£¨¦ËΪÕýʵÊý£©£¬Ôò³ÆÆäΪ¦Ë-¾Ö²¿±¶Ëõº¯Êý£®Èôº¯Êýf£¨x£©ÔÚx¡Ê[0£¬2]ʱ£¬f£¨x£©=sin¦Ðx£¬ÇÒx¡Ê£¨2£¬+¡Þ£©Ê±£¬f£¨x£©Îª¦Ë=2µÄ¾Ö²¿±¶Ëõº¯Êý£®ÏÖÓÐÏÂÁÐ4¸öÃüÌ⣺
¢ÙÈÎÈ¡x1¡¢x2¡Ê[0£¬+¡Þ£©£¬¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü2ºã³ÉÁ¢£»
¢Úf£¨x£©=2kf£¨x+2k£©£¨k¡ÊN*£©£¬¶ÔÓÚÒ»ÇÐx¡Ê[0£¬+¡Þ£©ºã³ÉÁ¢£»¢Ûº¯Êýy=f£¨x£©-ln£¨x-1£©ÓÐ5¸öÁãµã£»¢Ü¶ÔÈÎÒâx£¾0£¬Èô²»µÈʽf£¨x£©¡Ü$\frac{k}{x}$ºã³ÉÁ¢£¬ÔòkµÄ×îСֵÊÇ$\frac{5}{4}$£®
ÔòÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊǢ٢ܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=4t}\\{y=1+3t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£© ÔòÔ²CÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁÐÈýº¯ÊýÖУ¬Óësin$\frac{¦Ð}{3}$ÊýÖµÏàͬµÄÊÇ£¨¡¡¡¡£©
¢Ùsin£¨n¦Ð+$\frac{4}{3}$¦Ð£©
¢Úcos£¨2n¦Ð+$\frac{¦Ð}{6}$£©£»
¢Ûsin£¨2n¦Ð+$\frac{¦Ð}{3}$£©£»
¢Ücos[£¨2n+1£©¦Ð-$\frac{¦Ð}{6}$]£»
¢Ýsin[£¨2n+1£©¦Ð-$\frac{¦Ð}{3}$]£¨n¡ÊZ£©£®
A£®¢Ù¢ÚB£®¢Ù¢Û¢ÜC£®¢Ú¢Û¢ÝD£®¢Ù¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²E£º$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£®
£¨¢ñ£©ÈôµãP£¨$\sqrt{3}$£¬2£©ÔÚÍÖÔ²EÉÏ£¬ÇÒc=$\sqrt{3}$£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬Èô¹ýµãF1£¨-c£¬0£©µÄÖ±Ïß½»ÍÖÔ²EÓÚA£¬BÁ½µã£¬ÇÒ|AF1|=3|F1B|£®Ö¤Ã÷£ºAB¡ÍAF2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸