精英家教网 > 高中数学 > 题目详情
2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=$\sqrt{3}$,cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB
(1)求角C的大小;
(2)求△ABC的面积的最大值.

分析 (1)利用二倍角公式、两角和差的正弦公式化简已知的式子,再由内角的范围求出角C;
(2)由余弦定理和条件列出方程化简,利用基本不等式求出ab的范围,代入三角形的面积公式可求出△ABC面积的最大值.

解答 解:(1)∵cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB,
∴$\frac{1+cos2A}{2}$-$\frac{1+cos2B}{2}$=$\frac{\sqrt{3}}{2}sin2A$$-\frac{\sqrt{3}}{2}sin2B$,
则cos2A-cos2B=$\sqrt{3}$(sin2A-sin2B),
即$\sqrt{3}$sin2B-cos2B=$\sqrt{3}$sin2A-cos2A,
∴sin($2B-\frac{π}{6}$)=sin($2A-\frac{π}{6}$)
∵a≠b,且A、B∈(0,π),
∴A≠B,则$2A-\frac{π}{6}$≠$2B-\frac{π}{6}$,
∴$2A-\frac{π}{6}+(2B-\frac{π}{6})=π$,解得A+B=$\frac{2π}{3}$,
∴C=π-A-B=$\frac{π}{3}$;         
(2)由(1)知,C=$\frac{π}{3}$,且c=$\sqrt{3}$,
由余弦定理得,c2=a2+b2-2abcosC,
则3=a2+b2-ab,即a2+b2=ab+3≥2ab,
解得ab≤3,
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{4}$ab≤$\frac{3\sqrt{3}}{4}$,
故△ABC的面积的最大值是$\frac{3\sqrt{3}}{4}$.

点评 本题考查了余弦定理,二倍角公式、两角和差的正弦公式,以及三角形的面积公式,基本不等式求最值问题,注意三角形内角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设不等式组$\left\{\begin{array}{l}{x^2}+{y^2}≤1\\ y≥0\end{array}\right.$表示的平面区域为M,不等式组$\left\{\begin{array}{l}0≤x≤t\\ 0≤y≤\sqrt{1-{t^2}}\end{array}\right.$表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值为(  )
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{π}{4}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直三棱柱A1B1C1-ABC中,底面ABC为直角三角形,$∠BAC=\frac{π}{2}$,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,求线段DF的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项展开式${({\frac{2}{x}-{x^2}})^5}$中,含x项的系数为80.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用秦九韶算法计算f(x)=x6-12x5+60x4-160x3+240x2-192x+64的值时,当x=2时,v4的值为(  )
A.0B.80C.-80D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F是抛物线C:y2=4x的焦点,过点F的直线交抛物线C与A、B两点,且|AB|=6,则弦AB中点的横坐标为(  )
A.1B.2C.4D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2013年8月28日-30日,第六届豫商大会在“三商之源、华商之都”的商丘市举行,为了搞好接待工作,大会组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如所示的茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(Ⅰ)如果用分层抽样的方法从“高个子”中和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x,y∈R,$\overrightarrow{i}$、$\overrightarrow{j}$为直角坐标平面内x,y轴正方向上的单位向量,若向量$\overrightarrow{a}$+$\overrightarrow{b}$=2x$\overrightarrow{i}$+2y$\overrightarrow{j}$,$\overrightarrow{a}$-$\overrightarrow{b}$=4$\overrightarrow{j}$,|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=8.
(1)求动点M(x,y)的轨迹c的方程;
(2)过点(0,3)作直线l与曲线c交于A,B两点,设$\overrightarrow{AP}$=$\overrightarrow{OB}$,是否存在这样的直线l,使四边形OAPB是矩形?若存在,求出l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}}$,Sn)在曲线y=2x2-2上.
(1)求证:数列{an}是等比数列;
(2)记bn=$\frac{2n-1}{{a}_{n}}$,试求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案