精英家教网 > 高中数学 > 题目详情
10.二项展开式${({\frac{2}{x}-{x^2}})^5}$中,含x项的系数为80.(用数字作答)

分析 在二项展开式的通项公式中,令x的幂指数等于1,求出r的值,即可求得含x项的系数.

解答 解:二项展开式${({\frac{2}{x}-{x^2}})^5}$中,通项公式为Tr+1=${C}_{5}^{r}$•${(\frac{2}{x})}^{5-r}$•(-x2r=${C}_{5}^{r}$•(-1)r•25-r•x3r-5
令3r-5=1,求得r=2,可得含x项的系数为${C}_{5}^{2}$×8=80,
故答案为:80.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知⊙C的极坐标方程为:ρ2-4$\sqrt{2}ρsin(θ+\frac{π}{4})+6=0$
(Ⅰ)求圆C在直角坐标系中的圆心坐标,并选择合适的参数,写出圆C的参数方程;
(Ⅱ)点P(x,y)在圆C上,试求u=xy的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l与直线y=x垂直,则直线l的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为(  )
A.$[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$B.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$
C.$[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$D.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)当x∈[2,4]时,求f(x)的解析式;
(2)计算:f(0)+f(1)+f(2)+…+f(201).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ax2+bx+c(a>0),y=f(x)-x的零点为x1,x2,且0<x1<x2<$\frac{1}{a}$.
(1)当x∈(0,x1),求证:x<f(x)<x1
(2)若x=x0为y=f(x)的对称轴,求证:x0<$\frac{{x}_{1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=$\sqrt{3}$,cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB
(1)求角C的大小;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)在定义域的某子区间上满足f(x)=$\frac{1}{λ}f({x-λ})$(λ为正实数),则称其为λ-局部倍缩函数.若函数f(x)在x∈[0,2]时,f(x)=sinπx,且x∈(2,+∞)时,f(x)为λ=2的局部倍缩函数.现有下列4个命题:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;③函数y=f(x)-ln(x-1)有5个零点;④对任意x>0,若不等式f(x)≤$\frac{k}{x}$恒成立,则k的最小值是$\frac{5}{4}$.
则其中所有真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{1}{2}$,一个焦点是(-1,0),过直线x=4上一点引椭圆E的两条切线,切点分别是A、B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数λ,使得|$\overrightarrow{AC}$+|$\overrightarrow{BC}$|=λ|$\overrightarrow{AC}$|•|$\overrightarrow{BC}$|成立,若成立求出λ的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案