精英家教网 > 高中数学 > 题目详情
1.已知直线l与直线y=x垂直,则直线l的斜率为-1.

分析 由条件利用两条直线垂直的性质,求得直线l的斜率.

解答 解:由于直线y=x的斜率为1,故当直线l与直线y=x垂直时,直线l的斜率为-1,
故答案为:-1.

点评 本题主要考查两条直线垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(x+a)+\frac{2}{x}$,g(x)=lnx.(注:${[{ln(x+a)}]^′}=\frac{1}{x+a}$)
(1)a=0时,求函数f(x)的单调区间和极值;
(2)已知f(x)在[e,+∞)上是单调函数,求a的取值范围;
(3)已知m,n,ξ满足n>ξ>m>0,且$g'(ξ)=\frac{g(n)-g(m)}{n-m}$,试比较ξ与$\sqrt{mn}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设不等式组$\left\{\begin{array}{l}{x^2}+{y^2}≤1\\ y≥0\end{array}\right.$表示的平面区域为M,不等式组$\left\{\begin{array}{l}0≤x≤t\\ 0≤y≤\sqrt{1-{t^2}}\end{array}\right.$表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值为(  )
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{π}{4}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.2B.3C.$\frac{4}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若向量$\overrightarrow{OA}$=(1,-2),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则|$\overrightarrow{AB}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E为PA的中点.

(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直三棱柱A1B1C1-ABC中,底面ABC为直角三角形,$∠BAC=\frac{π}{2}$,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,求线段DF的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项展开式${({\frac{2}{x}-{x^2}})^5}$中,含x项的系数为80.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x,y∈R,$\overrightarrow{i}$、$\overrightarrow{j}$为直角坐标平面内x,y轴正方向上的单位向量,若向量$\overrightarrow{a}$+$\overrightarrow{b}$=2x$\overrightarrow{i}$+2y$\overrightarrow{j}$,$\overrightarrow{a}$-$\overrightarrow{b}$=4$\overrightarrow{j}$,|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=8.
(1)求动点M(x,y)的轨迹c的方程;
(2)过点(0,3)作直线l与曲线c交于A,B两点,设$\overrightarrow{AP}$=$\overrightarrow{OB}$,是否存在这样的直线l,使四边形OAPB是矩形?若存在,求出l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案