精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=ln(x+a)+\frac{2}{x}$,g(x)=lnx.(注:${[{ln(x+a)}]^′}=\frac{1}{x+a}$)
(1)a=0时,求函数f(x)的单调区间和极值;
(2)已知f(x)在[e,+∞)上是单调函数,求a的取值范围;
(3)已知m,n,ξ满足n>ξ>m>0,且$g'(ξ)=\frac{g(n)-g(m)}{n-m}$,试比较ξ与$\sqrt{mn}$的大小.

分析 (1)对f(x)求导,利用导数求得f(x)的单调区间
(2)对f(x)求导,分离参数a,利用导数的性质求得a的取值范围
(3)构造新函数,利用新函数的导数证明命题成立.

解答 解:(1)a=0,f(x)=lnx+$\frac{2}{x}$,f'(x)=$\frac{1}{x}-\frac{2}{{x}^{2}}=\frac{x-2}{{x}^{2}}$,f'(x)=0,x=2.
∵x>0,∴f(x)的单调增区间为(2,+∞),减区间为(0,2).且x=2时f(x)取得极小值f(2)=ln2+1
(2)∵$f(x)=ln({x+a})+\frac{2}{x}$∴$f'(x)=\frac{1}{x+a}-\frac{2}{x^2}=\frac{{{x^2}-2x-2a}}{{{x^2}({x+a})}}$,∵f(x)在[e,+∞)上单调∴$\left\{\begin{array}{l}x+a>0\\{x^2}-2x-2a≥0\end{array}\right.$或$\left\{\begin{array}{l}x+a>0\\{x^2}-2x-2a≤0\end{array}\right.$∴$\left\{\begin{array}{l}a>-e\\ a≤\frac{1}{2}{x^2}-x\end{array}\right.$或$\left\{\begin{array}{l}a>-e\\ a≥\frac{1}{2}{x^2}-x\end{array}\right.$∵当x≥e时,$\frac{1}{2}{x^2}-x≥\frac{1}{2}{e^2}-e$
∴$-e<a≤\frac{1}{2}{e^2}-e$…8分
(2)∵$g'(ξ)=\frac{g(n)-g(m)}{n-m}$∴$\frac{1}{ξ}=\frac{lnn-lnm}{n-m}$
设$h(x)=2lnx-x+\frac{1}{x}({x>1})$,则$h'(x)=\frac{2}{x}-1-\frac{1}{x^2}=-\frac{{{{({x-1})}^2}}}{x^2}<0$
∴h(x)<h(1)=0,∴当x>1时,$2lnx<x-\frac{1}{x}$
令$x=\sqrt{\frac{n}{m}}$,得$2ln\sqrt{\frac{n}{m}}<\sqrt{\frac{n}{m}}-\sqrt{\frac{m}{n}}$∴$lnn-lnm<\frac{n-m}{{\sqrt{mn}}}$⇒$\frac{lnn-lnm}{n-m}<\frac{1}{{\sqrt{mn}}}$∴$\frac{1}{ξ}<\frac{1}{{\sqrt{mn}}}$即$ξ>\sqrt{mn}$…14分.

点评 本题主要考查导数在求得参数的取值范围的应用,属于中档题,在高考中常作压轴题出现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知a>0,若不等式loga+3x-loga+1x+5≤n+$\frac{6}{n}$对任意n∈N*恒成立,则实数x的取值范围是(  )
A.[1,+∞)B.(0,1]C.[3,+∞)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某电影院统计电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述电影放映场次逐年变化规律的是(  )
A.y=ax2+bx+cB.y=aex+bC.y=ax3+bD.y=alnx+b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为$\frac{\sqrt{2}}{2}$,过左顶点A的直线l与椭圆交于另一点B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若|AB|=$\frac{4}{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a0=0,an=$\frac{1}{{2-{a_{n-1}}}}$(n∈N*).
(Ⅰ)求证:0≤an<an+1<1(n∈N);
(Ⅱ)在数列{an}中任意取定一项ak,构造数列{bn},满足b0=ak,bn=$\frac{{2{b_{n-1}}-1}}{{{b_{n-1}}}}$(n∈N*),问:数列{bn}是有穷数列还是无穷数列?并证明你的结论;
(Ⅲ)令cn=1-an(n∈N),求证:c${\;}_{1}^{\frac{3}{2}}$+c${\;}_{2}^{\frac{3}{2}}$+…+c${\;}_{n}^{\frac{3}{2}}$<1+$\frac{\sqrt{2}}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}\;,\;x≥0\\{x^2}+2x,\;x<0\end{array}\right.$,则f(2)=-4;不等式f(x)<3的解{x|x>-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}\;,\;x≥0\\{x^2}+2x,\;x<0\end{array}$,则f(f(-2))=0;不等式f(f(x))≤3的解集为(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知⊙C的极坐标方程为:ρ2-4$\sqrt{2}ρsin(θ+\frac{π}{4})+6=0$
(Ⅰ)求圆C在直角坐标系中的圆心坐标,并选择合适的参数,写出圆C的参数方程;
(Ⅱ)点P(x,y)在圆C上,试求u=xy的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l与直线y=x垂直,则直线l的斜率为-1.

查看答案和解析>>

同步练习册答案