精英家教网 > 高中数学 > 题目详情
1.已知a>0,若不等式loga+3x-loga+1x+5≤n+$\frac{6}{n}$对任意n∈N*恒成立,则实数x的取值范围是(  )
A.[1,+∞)B.(0,1]C.[3,+∞)D.[1,3]

分析 利用基本不等式求出n+$\frac{6}{n}$的最小值,然后利用函数的性质求出x的范围即可.

解答 解:∵n∈N*,∴n+$\frac{6}{n}$≥2$\sqrt{6}$,当n=$\sqrt{6}$时取等号,∴n=2或3,
当n=2时,n+$\frac{6}{n}$=5,
当n=3时,n+$\frac{6}{n}$=5,∴n+$\frac{6}{n}$≥5,
由题意可知,loga+3x-loga+1x+5≤5,
∴loga+3x≤loga+1x,
又a>0,∴a+3>a+1>1,
则x≥1.
∴实数x的取值范围是[1,+∞).
故选:A.

点评 本题考查函数的最值,基本不等式的应用,考查对数的运算性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(文科)已知数列{an}满足:a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*
(Ⅰ)求a3,a4,a5,a6的值及数列{an}的通项公式;
(Ⅱ)设bn=a2n-1•a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,长轴端点A与短轴端点B间的距离为$\sqrt{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆C上一动点,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在几何体ABCDN中,CD⊥平面ABC,DC∥AN,CD=2AN=4,又AB=AC=BC=2,点P是BD上的动点(与B、D两点不重合).
(1)若P为BD的中点,求证:AP⊥BC;
(2)若二面角B-PC-A的余弦值为$\frac{2\sqrt{19}}{19}$,求直线PN与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线AB中,A(1,0),B(2,$\sqrt{3}$)
(1)求直线AB的倾斜角;
(2)若直线AD与直线AB垂直,求直线AD的方程,并化为一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分布列.
(1)每次取出的产品不再放回去;
(2)每次取出的产品仍放回去;
(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在离心率为e的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,右焦点F(c,0),A($\frac{{a}^{2}}{c}$,0),过F的直线交椭圆于M、N两点,过A与直线MN平行的直线交椭圆于B、C两点,求证:|$\overrightarrow{FM}$|•|$\overrightarrow{FN}$|=e2|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(x+a)+\frac{2}{x}$,g(x)=lnx.(注:${[{ln(x+a)}]^′}=\frac{1}{x+a}$)
(1)a=0时,求函数f(x)的单调区间和极值;
(2)已知f(x)在[e,+∞)上是单调函数,求a的取值范围;
(3)已知m,n,ξ满足n>ξ>m>0,且$g'(ξ)=\frac{g(n)-g(m)}{n-m}$,试比较ξ与$\sqrt{mn}$的大小.

查看答案和解析>>

同步练习册答案