精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}\;,\;x≥0\\{x^2}+2x,\;x<0\end{array}$,则f(f(-2))=0;不等式f(f(x))≤3的解集为(-∞,$\sqrt{3}$].

分析 根据分段函数的表达式进行求解即可.

解答 解:由分段函数得f(-2)=4-4=0,则f(f(-2))=f(0)=-0=0,
 设t=f(x),
则不等式f(f(x))≤3等价为f(t)≤3,
由图象知t≥-3,
即f(x)≥-3,
若x≥0,由-x2≥-3得x2≤3,解得0≤x≤$\sqrt{3}$,
若x<0,2x+x2≥3,得x2+2x-3≥0,
解得x≥1或x≤-3,此时x<0,
综上x≤$\sqrt{3}$,
即不等式的解集为(-∞,$\sqrt{3}$],
故答案为:0;$(-∞,\sqrt{3}]$

点评 本题主要考查分段函数的应用,利用换元法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x轴的直线l:x=t(0≤t≤a)经过原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y=f(t)的大致图象如图,那么平面图形的形状不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(x+a)+\frac{2}{x}$,g(x)=lnx.(注:${[{ln(x+a)}]^′}=\frac{1}{x+a}$)
(1)a=0时,求函数f(x)的单调区间和极值;
(2)已知f(x)在[e,+∞)上是单调函数,求a的取值范围;
(3)已知m,n,ξ满足n>ξ>m>0,且$g'(ξ)=\frac{g(n)-g(m)}{n-m}$,试比较ξ与$\sqrt{mn}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:(x-a)2+(y-a+2)2=1,A(0,2),若圆C上存在一点M,满足MA2+MO2=10,则实数a的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点,若它停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从5这个点开始跳,则经2015次跳后停在的点对应的数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.A和B是抛物线y2=8x上除去原点以外的两个动点,O是坐标原点且满足$\overrightarrow{OA}•\overrightarrow{OB}$=0,$\overrightarrow{OM}•\overrightarrow{AB}$=0,则支动点M的轨迹方程为(  )
A.x2+y2-8x=0B.y=6x2C.x2+4y2=1D.$\frac{x^2}{9}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设不等式组$\left\{\begin{array}{l}{x^2}+{y^2}≤1\\ y≥0\end{array}\right.$表示的平面区域为M,不等式组$\left\{\begin{array}{l}0≤x≤t\\ 0≤y≤\sqrt{1-{t^2}}\end{array}\right.$表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值为(  )
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{π}{4}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直三棱柱A1B1C1-ABC中,底面ABC为直角三角形,$∠BAC=\frac{π}{2}$,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,求线段DF的长度的最小值.

查看答案和解析>>

同步练习册答案