精英家教网 > 高中数学 > 题目详情
13.在直三棱柱A1B1C1-ABC中,底面ABC为直角三角形,$∠BAC=\frac{π}{2}$,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,求线段DF的长度的最小值.

分析 建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,可得F(t1,0,0)(0<t1<1),E(0,1,$\frac{1}{2}$),G($\frac{1}{2}$,0,1),D(0,t2,0)(0<t2<1).可得$\overrightarrow{EF}$=(t1,-1,-$\frac{1}{2}$),$\overrightarrow{GD}$=(-$\frac{1}{2}$,t2,-1),利用GD⊥EF,由此推出 0<t2<$\frac{1}{2}$.再利用向量的模的计算公式和二次函数的单调性即可得出.

解答 解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,
则F(t1,0,0)(0<t1<1),E(0,1,$\frac{1}{2}$),G($\frac{1}{2}$,0,1),D(0,t2,0)(0<t2<1).
∴$\overrightarrow{EF}$=(t1,-1,-$\frac{1}{2}$),$\overrightarrow{GD}$=(-$\frac{1}{2}$,t2,-1).
∵GD⊥EF,∴t1+2t2=1,由此推出 0<t2<$\frac{1}{2}$.
又$\overrightarrow{DF}$=(t1,-t2,0),
∴|$\overrightarrow{DF}$|=$\sqrt{{{t}_{1}}^{2}+{{t}_{2}}^{2}}$=$\sqrt{5({t}_{2}-\frac{2}{5})^{2}+\frac{1}{5}}$,
∴当t2=$\frac{2}{5}$时,线段DF的长度的最小值为$\frac{{\sqrt{5}}}{5}$.

点评 本题考查了通过建立空间直角坐标系利用向量的运算及模的计算公式和二次函数的单调性解决问题,考查了推理能力和空间想象能力、计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}\;,\;x≥0\\{x^2}+2x,\;x<0\end{array}$,则f(f(-2))=0;不等式f(f(x))≤3的解集为(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)为定义在区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是(  )
①f(x)=$\frac{x}{{e}^{x}}$,②f(x)=$\sqrt{x}$,③f(x)=$\frac{ln(x+1)}{x}$,④f(x)=$\frac{x}{{x}^{2}+1}$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l与直线y=x垂直,则直线l的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x(单位:小时)与当于投篮命中率y之间的关系:
时间x12345
命中率y0.40.50.60.60.4
(Ⅰ)根据上表的数据,求出y关于x的线性回归方程y=$\widehat{b}$x+a;
(Ⅱ)预测小李该月6号打6小时篮球的投篮命中率为多少?(考点:线性回归应用)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为(  )
A.$[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$B.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$
C.$[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$D.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)当x∈[2,4]时,求f(x)的解析式;
(2)计算:f(0)+f(1)+f(2)+…+f(201).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=$\sqrt{3}$,cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB
(1)求角C的大小;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列三函数中,与sin$\frac{π}{3}$数值相同的是(  )
①sin(nπ+$\frac{4}{3}$π)
②cos(2nπ+$\frac{π}{6}$);
③sin(2nπ+$\frac{π}{3}$);
④cos[(2n+1)π-$\frac{π}{6}$];
⑤sin[(2n+1)π-$\frac{π}{3}$](n∈Z).
A.①②B.①③④C.②③⑤D.①⑤

查看答案和解析>>

同步练习册答案