精英家教网 > 高中数学 > 题目详情
12.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{1}{2}$,一个焦点是(-1,0),过直线x=4上一点引椭圆E的两条切线,切点分别是A、B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数λ,使得|$\overrightarrow{AC}$+|$\overrightarrow{BC}$|=λ|$\overrightarrow{AC}$|•|$\overrightarrow{BC}$|成立,若成立求出λ的值,若不存在,请说明理由.

分析 (Ⅰ)椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{1}{2}$,一个焦点是(-1,0),计算a,b,即得结论;
(Ⅱ)通过分别将点M的坐标(4,t)代入切线方程,利用两点确定唯一的一条直线,即得结论;
(III)通过将直线AB的方程代入椭圆方程,利用韦达定理计算$\frac{1}{|AC|}$+$\frac{1}{|BC|}$即可.

解答 (I)解:椭圆方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点是(-1,0),故c=1,
又$\frac{c}{a}$=$\frac{1}{2}$,所以a=2,b=$\sqrt{3}$,
所以所求的椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.…(4分)
(II)证明:设切点坐标为A(x1,y1),B(x2,y2),直线l上一点M的坐标(4,t),
则切线方程分别为$\frac{{x}_{1}x}{4}+\frac{{y}_{1}y}{3}=1$,$\frac{{x}_{2}x}{4}+\frac{{y}_{2}y}{3}=1$,
又两切线均过点M,可得点A,B的坐标都适合方程x+$\frac{t}{3}y$=1,故直线AB的方程是x+$\frac{t}{3}y$=1,显然直线x+$\frac{t}{3}y$=1恒过点(1,0),故直线AB恒过定点C(1,0).…(9分)
(III)解:将直线AB的方程x+$\frac{t}{3}y$=1,代入椭圆方程,整理得($\frac{{t}^{2}}{3}$+4)y2-2ty-9=0,
所以韦达定理可得:y1+y2=$\frac{6t}{12+{t}^{2}}$,y1y2=-$\frac{27}{12+{t}^{2}}$,
不妨设y1>0,y2<0,
|AC|=$\sqrt{({x}_{1}-1)^{2}+{{y}_{1}}^{2}}$=$\frac{\sqrt{{t}^{2}+9}}{3}$y1
同理|BC|=-$\frac{\sqrt{{t}^{2}+9}}{3}$y2,…(12分)
所以$\frac{1}{|AC|}$+$\frac{1}{|BC|}$=$\frac{3}{\sqrt{{t}^{2}+9}}$($\frac{1}{{y}_{1}}$-$\frac{1}{{y}_{2}}$)=$\frac{1}{\sqrt{{t}^{2}+9}}•\frac{\sqrt{144{t}^{2}+9×144}}{9}$=$\frac{4}{3}$,
即:|AC|+|BC|=$\frac{4}{3}$|AC|•|BC|,
所以λ=$\frac{4}{3}$…(14分)

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.二项展开式${({\frac{2}{x}-{x^2}})^5}$中,含x项的系数为80.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x,y∈R,$\overrightarrow{i}$、$\overrightarrow{j}$为直角坐标平面内x,y轴正方向上的单位向量,若向量$\overrightarrow{a}$+$\overrightarrow{b}$=2x$\overrightarrow{i}$+2y$\overrightarrow{j}$,$\overrightarrow{a}$-$\overrightarrow{b}$=4$\overrightarrow{j}$,|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=8.
(1)求动点M(x,y)的轨迹c的方程;
(2)过点(0,3)作直线l与曲线c交于A,B两点,设$\overrightarrow{AP}$=$\overrightarrow{OB}$,是否存在这样的直线l,使四边形OAPB是矩形?若存在,求出l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+4≥0}\\{x+y≥0}\\{y≤4}\end{array}\right.$,则目标函数z=x-2y的最小值是-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1,直线l:$\frac{x}{12}$+$\frac{y}{8}$=1.
(I)以原点O为极点,x轴正半轴为极轴建立极坐标系,求椭圆C与直线l的极坐标方程;
(Ⅱ)已知P是l上一动点,射线OP交椭圆C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2.当点P在l上移动时,求点Q在直角坐标系下的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个科研小组有4位男组员和2位女组员,其中一位男组员和一位女组员不会英语,其他组员都会英语,现在要用抽签的方法从中选出两名组员组成一个科研攻关小组.
(Ⅰ)求组成攻关小组的成员是同性的概率;
(Ⅱ)求组成攻关小组的成员中有会英语的概率;
(Ⅲ)求组成攻关小组的成员中有会英语并且是异性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}}$,Sn)在曲线y=2x2-2上.
(1)求证:数列{an}是等比数列;
(2)记bn=$\frac{2n-1}{{a}_{n}}$,试求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是(  )
A.$\frac{3}{2}$e${\;}^{\frac{2}{3}}$B.$\frac{13}{6}$e6C.$\frac{1}{6}$e6D.$\frac{7}{2}$e${\;}^{\frac{2}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的对边分别为a,b,c,若A为钝角,sinA=$\frac{4}{5}$,c=5,b=3,求边a和△ABC的面积.

查看答案和解析>>

同步练习册答案