精英家教网 > 高中数学 > 题目详情
20.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+4≥0}\\{x+y≥0}\\{y≤4}\end{array}\right.$,则目标函数z=x-2y的最小值是-8.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$作出可行域如图,
化目标函数z=x-2y为y=$\frac{x}{2}$-$\overline{2}$,
由图可知,当直线y=$\frac{x}{2}$-$\overline{2}$过B(0,4)时直线在y轴上的截距最大,z有最小值,等于0-2×4=-8.
故答案为:-8.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为(  )
A.$[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$B.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$
C.$[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$D.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)在定义域的某子区间上满足f(x)=$\frac{1}{λ}f({x-λ})$(λ为正实数),则称其为λ-局部倍缩函数.若函数f(x)在x∈[0,2]时,f(x)=sinπx,且x∈(2,+∞)时,f(x)为λ=2的局部倍缩函数.现有下列4个命题:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;③函数y=f(x)-ln(x-1)有5个零点;④对任意x>0,若不等式f(x)≤$\frac{k}{x}$恒成立,则k的最小值是$\frac{5}{4}$.
则其中所有真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{4}+{y^2}$=1,过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.
(1)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;
(2)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列三函数中,与sin$\frac{π}{3}$数值相同的是(  )
①sin(nπ+$\frac{4}{3}$π)
②cos(2nπ+$\frac{π}{6}$);
③sin(2nπ+$\frac{π}{3}$);
④cos[(2n+1)π-$\frac{π}{6}$];
⑤sin[(2n+1)π-$\frac{π}{3}$](n∈Z).
A.①②B.①③④C.②③⑤D.①⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,则复数$\frac{1-3i}{1+i}$=(  )
A.2+iB.2-iC.-1-2iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{1}{2}$,一个焦点是(-1,0),过直线x=4上一点引椭圆E的两条切线,切点分别是A、B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数λ,使得|$\overrightarrow{AC}$+|$\overrightarrow{BC}$|=λ|$\overrightarrow{AC}$|•|$\overrightarrow{BC}$|成立,若成立求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系中,已知点F(0,1),直线l:y=-1,点H是直线l上任意一点,过点H垂直于l的直线交线段FH的中垂线于点M.记点M的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)若A,B为曲线Γ上异于原点的任意两点,过A,B分别作曲线T的两条切线l1、l2,l1、l2相交于点P,且与x轴分别交于E、F,设△PEF与△OAB的面积分别为S1、S2.试问:是否存在实数λ使得S1=λS2?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.sin$\frac{5π}{12}$=(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

同步练习册答案