精英家教网 > 高中数学 > 题目详情
12.在复平面内,复数$\frac{2}{1+i}$(i为虚数单位)对应的点与原点的距离是(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

分析 利用复数的运算法则、模的计算公式、几何意义即可得出.

解答 解:在复平面内,复数$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i对应的点(1,-1)与原点的距离=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故选:B.

点评 本题考查了复数的运算法则、几何意义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列命题中,真命题的个数是.(  )
①命题“若p,则q”的否命题是“若p,则¬q”;
②xy≠10是x≠5或y≠2的充分不必要条件;
③已知命题p,q,若“p∧q”为假命题,则命题p与q一真一假;
④线性相关系数r的绝对值越接近1,表示两个变量的相关性越强.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆$ρ=\sqrt{2}(cosθ+sinθ)$的圆心的极坐标是(1,$\frac{π}{4}$);半径是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足$\frac{a_n}{{{a_n}+2}}=\frac{1}{2}{a_{n+1}}$(n∈N*),a1=1.
(1)证明:数列$\{\frac{1}{a_n}\}$为等差数列,并求数列{an}的通项公式;
(2)若记bn为满足不等式${(\frac{1}{2})^n}<{a_k}≤{(\frac{1}{2})^{n-1}}(n∈{N^*})$的正整数k的个数,数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和为Sn,求关于n的不等式Sn<4032的最大正整数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知θ∈{α|α=kπ+(-1)k+1•$\frac{π}{4}$,k∈Z},则角θ的终边所在的象限是三,四.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{{({{a_n}+1})({{a_n}+5})}}$,数列{bn}前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知⊙C:x2+(y-2)2=1,点M在x轴正半轴上,过点M作⊙C的两条切线,切点分别为A,B.
(1)若点M的坐标为(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x-$\sqrt{3}$y+1=0的斜率为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知i是虚数单位,$\overline z$是z的共轭复数,$({2-i})\overline z=3-4i$,则z的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案