精英家教网 > 高中数学 > 题目详情
4.如图,已知⊙C:x2+(y-2)2=1,点M在x轴正半轴上,过点M作⊙C的两条切线,切点分别为A,B.
(1)若点M的坐标为(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求点M的坐标.

分析 (1)连结AC,BC,MC,由点C,M的坐标求得|CM|=2$\sqrt{2}$.又|CA|=1,由勾股定理求得|AM|.设∠AMC=θ,求得sin θ=$\frac{1}{2\sqrt{2}}$,利用二倍角的余弦得cos 2θ,代入数量积公式求得$\overrightarrow{MA}$•$\overrightarrow{MB}$;
(2)设点M(m,0)(m>0),则|CM|=$\sqrt{{m}^{2}+4}$,求出|AM|.设AB与CM相交于D,则D为AB的中点,且AD⊥CM.由射影定理列式求得m,则点M的坐标可求.

解答 解:(1)连结AC,BC,MC,则AC⊥AM,BC⊥BM,△AMC≌△BMC.
∵点C(0,2),M(2,0),∴|CM|=2$\sqrt{2}$.
又|CA|=1,∴|AM|=$\sqrt{|CM{|}^{2}-|CA{|}^{2}}$=$\sqrt{7}$.
设∠AMC=θ,则sin θ=$\frac{|CA|}{|CM|}$=$\frac{1}{2\sqrt{2}}$,cos2θ=1-2sin2θ=$\frac{3}{4}$,
∴$\overrightarrow{MA}$•$\overrightarrow{MB}$=|$\overrightarrow{MA}$||$\overrightarrow{MB}$|cos2θ=7×$\frac{3}{4}$=$\frac{21}{4}$;
(2)设点M(m,0)(m>0),则|CM|=$\sqrt{{m}^{2}+4}$,
|AM|=$\sqrt{|CM{|}^{2}-|CA{|}^{2}}=\sqrt{{m}^{2}+3}$.
设AB与CM相交于D,则D为AB的中点,且AD⊥CM.
∴|CM|×|AD|=|CA|×|AM|,即$\sqrt{{m}^{2}+4}$×$\frac{2\sqrt{2}}{3}$=1×$\sqrt{{m}^{2}+3}$.
则8(m2+4)=9(m2+3),
∴m2=5,得m=$\sqrt{5}$,
∴点M的坐标为($\sqrt{5}$,0).

点评 本题考查直线与圆位置关系的应用,考查平面向量的数量积运算,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知ω>0,函数f(x)=sinωx在区间$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9个零点,则ω的取值范围是(  )
A.16≤ω<20B.16≤ω≤20C.16≤ω<18D.16≤ω≤18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,a,b,c分别为角A,B,C的对边,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,则角C的大小为(  )
A.15°B.75°C.15°或75°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{2}{1+i}$(i为虚数单位)对应的点与原点的距离是(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)证明:数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,并求{an}的通项公式;
(2)若数列{bn}满足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若对一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为(2,$\frac{π}{2}$),曲线C的极坐标方程为ρcosθ-ρsinθ=1,曲线D的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数).曲线C和曲线D相交于A,B两点.
(1)求点P的直角坐标;
(2)求曲线C的直角坐标方程和曲线D的普通方程;
(3)求△PAB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为使高三同学在高考复习中更好的适应全国卷,进一步提升成绩,济南外国语学校计划聘请北京命题组专家利用周四下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有(  )
A.36种B.30种C.24种D.6种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,顶点A(7,-3),AC边上的高BH所在直线方程为x-2y-5=0,AB边上的中线CM所在的直线方程为6x-y-21=0.
(Ⅰ)求直线AC和直线BC的方程;
(Ⅱ)若点P满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=|$\overrightarrow{PC}$|,求$\overrightarrow{AP}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn},Sn为{an}的前n项和,且满足Sn+1=Sn+an+2n+2,若a1=b1=2,bn+1=2bn+1,n∈N*
(I)求数列{an},{bn}的通项公式;
(II)令cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案