9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãPµÄ¼«×ø±êΪ£¨2£¬$\frac{¦Ð}{2}$£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È=1£¬ÇúÏßDµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®ÇúÏßCºÍÇúÏßDÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóµãPµÄÖ±½Ç×ø±ê£»
£¨2£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßDµÄÆÕͨ·½³Ì£»
£¨3£©Çó¡÷PABµÄÃæ»ýS£®

·ÖÎö £¨1£©¸ù¾Ý¼«×ø±êµÄ¶¨Òåת»¯£»
£¨2£©¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓÚ¹ØÏµ×ª»¯£¬Ïû²ÎÊýµÃ³öÆÕͨ·½³Ì£»
£¨3£©Çó³öAB£¬ÔÙ¼ÆËãPµ½ABµÄ¾àÀë¼´¿ÉµÃ³öÈý½ÇÐεÄÃæ»ý£®

½â´ð ½â£º£¨1£©PµãµÄÖ±½Ç×ø±êΪ£¨0£¬2£©£»
£¨2£©ÇúÏßCµÄÖ±½Ç·½³ÌΪ£ºx-y-1=0£»
ÇúÏßDµÄÖ±½Ç×ø±ê·½³ÌΪ£º£¨x-1£©2+y2=1£®
£¨3£©ÇúÏßDµÄÔ²ÐÄ£¨1£¬0£©µ½Ö±ÏßCµÄ¾àÀë$\frac{0}{\sqrt{2}}$=0£¬
¡àÇúÏßC¾­¹ýÔ²DµÄÔ²ÐÄ£¬¡à|AB|=2£¬
ÓÖP£¨0£¬2£©µ½Ö±ÏßABµÄ¾àÀëd=$\frac{3}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$£¬
¡àS¡÷PAB=$\frac{1}{2}AB•d$=$\frac{1}{2}¡Á2¡Á\frac{3\sqrt{2}}{2}$=$\frac{3\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³ÊÐ5ÄêÖеÄÃºÆøÏûºÄÁ¿ÓëʹÓÃÃºÆø»§ÊýµÄÀúÊ·×ÊÁÏÈçÏ£º
Äê·Ý20062007200820092010
xÓû§£¨Íò»§£©11.11.51.61.8
y£¨ÍòÁ¢·½Ã×£©6791112
£¨1£©¼ìÑéÊÇ·ñÏßÐÔÏà¹Ø£»
£¨2£©Ç󻨹鷽³Ì£»
£¨3£©ÈôÊÐÕþ¸®ÏÂÒ»²½ÔÙÀ©´óÁ½Ç§ÃºÆøÓû§£¬ÊÔÔ¤²â¸ÃÊÐÃºÆøÏûºÄÁ¿½«´ïµ½¶àÉÙ£¿
£¨  $b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©\;£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x}\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}a=\overline y-b\overline x$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}Âú×ã$\frac{a_n}{{{a_n}+2}}=\frac{1}{2}{a_{n+1}}$£¨n¡ÊN*£©£¬a1=1£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ$\{\frac{1}{a_n}\}$ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô¼ÇbnΪÂú×ã²»µÈʽ${£¨\frac{1}{2}£©^n}£¼{a_k}¡Ü{£¨\frac{1}{2}£©^{n-1}}£¨n¡Ê{N^*}£©$µÄÕýÕûÊýkµÄ¸öÊý£¬ÊýÁÐ{$\frac{{b}_{n}}{{a}_{n}}$}µÄǰnÏîºÍΪSn£¬Çó¹ØÓÚnµÄ²»µÈʽSn£¼4032µÄ×î´óÕýÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îΪ2£¬Ç°nÏîºÍΪSn£¬ÇÒS1£¬S2£¬S4³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{4}{{£¨{{a_n}+1}£©£¨{{a_n}+5}£©}}$£¬ÊýÁÐ{bn}ǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖª¡ÑC£ºx2+£¨y-2£©2=1£¬µãMÔÚxÖáÕý°ëÖáÉÏ£¬¹ýµãM×÷¡ÑCµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£®
£¨1£©ÈôµãMµÄ×ø±êΪ£¨2£¬0£©£¬Çó$\overrightarrow{MA}$•$\overrightarrow{MB}$µÄÖµ£»
£¨2£©Èô|AB|=$\frac{4\sqrt{2}}{3}$£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚµ×ÃæÎªµÈÑüÖ±½ÇÈý½ÇÐεÄÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB¡ÍBC£¬AB=2£¬AA1=1£¬DΪA1C1µÄÖе㣬Ïß¶ÎB1CÉϵĵãMÂú×ã$\overrightarrow{{B}_{1}M}$=$\frac{1}{3}$$\overrightarrow{{B}_{1}C}$£¬ÇóÖ±ÏßBMÓëÃæAB1DËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ö±Ïßx-$\sqrt{3}$y+1=0µÄбÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\frac{\sqrt{3}}{3}$C£®-$\frac{\sqrt{3}}{3}$D£®-$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªf£¨x£©=ax3+2x2+1£¬Èôf'£¨-1£©=5£¬ÔòaµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®$-\frac{1}{3}$B£®$\frac{1}{3}$C£®$-\frac{5}{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+2y-2¡Ý0\\ 2x+y-4¡Ü0\\ x-y+1¡Ý0\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=3|x|+|y-2|µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬8]B£®[3£¬8]C£®[1£¬3]D£®[1£¬6]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸