精英家教网 > 高中数学 > 题目详情
19.变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ x-y+1≥0\end{array}\right.$,则目标函数z=3|x|+|y-2|的取值范围是(  )
A.[1,8]B.[3,8]C.[1,3]D.[1,6]

分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.

解答 解:变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ x-y+1≥0\end{array}\right.$,对应的平面区域如图:
∴x≥0,y≤2,∴z=3|x|+|y-2|=3x-y+2,
由z=3x-y+2得y=3x-z+2,
平移直线y=3x-z+2,由图象可知当直线y=3x-z+3经过点A时,直线y=3x-z+3的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-2=0}\end{array}\right.$,解得A(0,1),
此时zmin=3×0-1+2=1,
当直线y=3x-z+2经过点B(2,0)时,直线y=3x-z+2的截距最小,此时z最大,
此时zmax=3×2-0+2=8,
故1≤z≤8,
故选:A.

点评 本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为(2,$\frac{π}{2}$),曲线C的极坐标方程为ρcosθ-ρsinθ=1,曲线D的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数).曲线C和曲线D相交于A,B两点.
(1)求点P的直角坐标;
(2)求曲线C的直角坐标方程和曲线D的普通方程;
(3)求△PAB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平行四边形ABCD中,$\overrightarrow{AB}=(1,-2)$,$\overrightarrow{AD}=(2,1)$,则$\overrightarrow{AD}•\overrightarrow{AC}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若等边三角形ABC的边长为12,平面内一点M满足$\overrightarrow{CM}=\frac{3}{4}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$,则$\overrightarrow{AM}•\overrightarrow{BM}$=(  )
A.-26B.-27C.-28D.-29

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn},Sn为{an}的前n项和,且满足Sn+1=Sn+an+2n+2,若a1=b1=2,bn+1=2bn+1,n∈N*
(I)求数列{an},{bn}的通项公式;
(II)令cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知数列{an}中,a1=2,对任意正整数n,都有an+1-an=2n
(I)求数列{an}的通项公式:
(II)设bn=$\frac{{4{n^2}}}{{{{({{{log}_{\sqrt{2}}}{a_n}})}^2}-1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知函数f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$(其中e为自然对数的底数),h(x)=x-$\frac{1}{x}$.
(I)求函数f(x)的单调区间;
(II)设g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,.已知直线y=$\frac{x}{e}$是曲线y=f(x)的切线,且函数g(x)在(0,+∞)上是增函数.
(i)求实数a的值;
(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1,F2是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列四个结论中假命题的序号是①④.
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线a,b是异面直线,则与a,b都相交的两条直线是异面直线.

查看答案和解析>>

同步练习册答案