分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)(i)根据切线方程求出a的值即可;(ii)问题转化为$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立,根据函数的单调性求出c的范围即可.
解答 解:(Ⅰ)∵$f(x)=\frac{{a{x^2}}}{e^x}(a≠0)$,
∴$f'(x)=a(2x{e^{-x}}-{x^2}{e^{-x}})=ax(2-x){e^{-x}}=\frac{ax(2-x)}{e^x}$,
①当a>0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)<0,在x∈(0,2)时,f'(x)>0,
故f(x)在(-∞,0),(2,+∞)上是减函数,在(0,2)上是增函数;
②当a<0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)>0,在x∈(0,2)时,f'(x)<0,
故f(x)在(-∞,0),(2,+∞)上是增函数,在(0,2)上是减函数;…(4分)
(Ⅱ)(i)对f(x)求导,得$f'(x)=\frac{ax(2-x)}{e^x}$,
设直线$y=\frac{x}{e}$与曲线y=f(x)切于点P(x0,y0),
则$\left\{\begin{array}{l}\frac{x_0}{e}=\frac{ax_0^2}{{{e^{x_0}}}}\\ \frac{1}{e}=\frac{{a{x_0}({2-{x_0}})}}{{{e^{x_0}}}}\end{array}\right.$解得a=x0=1,∴a=1; …(7分)
(ii)记函数ϕ(x)=f(x)-h(x)=$\frac{x^2}{e^x}-(x-\frac{1}{x})$,x>0,
求导,得$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$,
当x≥2时,ϕ'(x)<0恒成立,
当0<x<2时,$x(2-x)≤{[\frac{x+(2-x)}{2}]^2}=1$,
∴$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$$≤\frac{1}{e^x}-1-\frac{1}{x^2}<1-1-\frac{1}{x^2}<0$,
∴ϕ'(x)<0在(0,+∞)上恒成立,故ϕ(x)在(0,+∞)上单调递减.
又$ϕ(1)=\frac{1}{e}>0$,$ϕ(2)=\frac{4}{e^2}-\frac{3}{2}<0$,
曲线ϕ(x)=f(x)-h(x)在[1,2]上连续不间断,
∴由函数的零点存在性定理及其单调性知,?唯一的x0∈(1,2),使ϕ(x0)=0.
∴当x∈(0,x0)时,ϕ(x)>0,当x∈(x0,+∞)时,ϕ(x)<0.
∴当x>0时,$g(x)=\frac{1}{2}[f(x)+h(x)]-\frac{1}{2}|f(x)-h(x)|-c{x^2}$=$\left\{\begin{array}{l}x-\frac{1}{x}-c{x^2},0<x≤{x_0}\\ \frac{x^2}{e^x}-c{x^2},x>{x_0}\end{array}\right.$
求导,得$g'(x)=\left\{\begin{array}{l}1+\frac{1}{x^2}-2cx,\;0<x≤{x_0}\\ \frac{x(2-x)}{e^x}-2cx,\;x>{x_0}.\end{array}\right.$
由函数g(x)在(0,+∞)上是增函数,且曲线y=g(x)在(0,+∞)上连续不断知:
g'(x)≥0在(0,x0],(x0,+∞)上恒成立.
①当x∈(x0,+∞)时,$\frac{x(2-x)}{{e}^{x}}$-2cx≥0在(x0,+∞)上恒成立,
即$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立,
记$u(x)=\frac{2-x}{e^x}$,x>x0,则$u'(x)=\frac{x-3}{e^x}$,x>x0,
当 x变化时,u'(x),u(x)变化情况列表如下:
| x | (x0,3) | 3 | (3,+∞) |
| u'(x) | - | 0 | + |
| u(x) | ↓ | 极小值 | ↑ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,8] | B. | [3,8] | C. | [1,3] | D. | [1,6] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {(1,3)} | C. | {(1,2)} | D. | {2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x'-4y'+1=0 | B. | 3x'+y'-1=0 | C. | 9x'-y'+1=0 | D. | x'-4y'+1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com