精英家教网 > 高中数学 > 题目详情
20.已知复数z满足(2-i)$\overline z$=5,则z在复平面内对应的点关于y轴对称的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘除运算化简求得$\overline{z}$,进一步得到z,然后找对称点的坐标得答案.

解答 解:由(2-i)$\overline z$=5,得$\overline{z}=\frac{5}{2-i}=\frac{5(2+i)}{(2-i)(2+i)}=\frac{5(2+i)}{5}=2+i$,
∴z=2-i,则z在复平面内对应的点的坐标为(2,-1),关于y轴对称的坐标为(-2,-1),
位于第三象限.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在平行四边形ABCD中,$\overrightarrow{AB}=(1,-2)$,$\overrightarrow{AD}=(2,1)$,则$\overrightarrow{AD}•\overrightarrow{AC}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知函数f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$(其中e为自然对数的底数),h(x)=x-$\frac{1}{x}$.
(I)求函数f(x)的单调区间;
(II)设g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,.已知直线y=$\frac{x}{e}$是曲线y=f(x)的切线,且函数g(x)在(0,+∞)上是增函数.
(i)求实数a的值;
(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1,F2是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,菱ABCD与四边形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M为CF的中点,AC∩BD=G.
(I)求证:GM∥平面CDE;
(II)求证:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,已知圆C的极坐标方程为ρ2-2$\sqrt{2}ρcos({θ-\frac{π}{4}})+1=0$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.
(Ⅰ)求圆C的直角坐标方程并写出圆心坐标和半径;
(Ⅱ)若$θ∈({0,\frac{π}{3}}]$,直线l的参数方程为$\left\{{\begin{array}{l}{x=2+tcosθ}\\{y=2+tsinθ}\end{array}}$(t为参数),点P的直角坐标为(2,2),直线l交圆C于A,B两点,求$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:如果a>b>0,c>d>0,那么ac>bd.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列四个结论中假命题的序号是①④.
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线a,b是异面直线,则与a,b都相交的两条直线是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.马路上9盏路灯,为了节约用电可以关掉3盏路灯,但两端2盏不能关掉,也不能同时关掉相邻的2盏或3盏,这样的关灯方法有(  )
A.56种B.36种C.20种D.10种

查看答案和解析>>

同步练习册答案