精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)证明:数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,并求{an}的通项公式;
(2)若数列{bn}满足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若对一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求实数λ的最小值.

分析 (1)利用数列的递推关系式推出数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是首项为3,公差为 3的等差数列,然后求解通项公式.
(2)化简数列的通项公式,利用数列的单调性,化简求解即可.

解答 解:(1)因为${a_{n+1}}+1=\frac{{-2{a_n}-3}}{{3{a_n}+4}}+1=\frac{{{a_n}+1}}{{3{a_n}+4}}$,
∴$\frac{1}{{{a_{n+1}}+1}}=\frac{{3{a_n}+4}}{{{a_n}+1}}=3+\frac{1}{{{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}+1}}-\frac{1}{{{a_n}+1}}=3$,
所以$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是首项为3,公差为 3的等差数列,
所以$\frac{1}{{{a_n}+1}}=3n$,∴${a_n}=\frac{1}{3n}-1$.
(2)由数列{bn}满足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),可得${b_n}=\frac{1}{2n}$,
设$f(n)=\sqrt{2n+1}\frac{1}{2}•\frac{3}{4}•\frac{5}{6}…\frac{2n-1}{2n}(n≥1,n∈$N*),
由$\frac{{f({n+1})}}{f(n)}=\sqrt{\frac{{4{n^2}+8n+3}}{{4{n^2}+8n+4}}}<1$得$λ≥\frac{{\sqrt{3}}}{2}$,
即λ的最小值为$\frac{{\sqrt{3}}}{2}$.

点评 本题考查数列的递推关系式的应用,数列与不等式的综合应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设U={x|x是不大于8的正整数},A={2,4,5,8},B={1,3,5,7},求A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边过点(m,9),且tanα=$\frac{3}{4}$,则sinα的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知θ∈{α|α=kπ+(-1)k+1•$\frac{π}{4}$,k∈Z},则角θ的终边所在的象限是三,四.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$-bx+2(a,b∈R)有极值,且在x=1处的切线与直线2x+2y+3=0垂直.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为2.若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知⊙C:x2+(y-2)2=1,点M在x轴正半轴上,过点M作⊙C的两条切线,切点分别为A,B.
(1)若点M的坐标为(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面下降1米后,拱桥内水面宽度是(  )
A.6$\sqrt{2}$米B.6$\sqrt{6}$米C.3$\sqrt{2}$米D.3$\sqrt{6}$米

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方形ABCD的边长为2,M,N分别是边AB,BC上的点,当△BMN的周长是4时,∠MDN的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.斜率为2的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

同步练习册答案