精英家教网 > 高中数学 > 题目详情
10.已知角α的终边过点(m,9),且tanα=$\frac{3}{4}$,则sinα的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

分析 直接利用任意角的三角函数,求解即可.

解答 解:角α的终边为点P(m,9),即x=m,y=9,
∴r=$\sqrt{{m}^{2}+81}$,
∵tanα=$\frac{9}{m}$=$\frac{3}{4}$,
∴m=12.
则r=15.
∴sinα=$\frac{y}{r}$=$\frac{9}{15}$=$\frac{3}{5}$.
故选:C.

点评 本题考查了任意三角形的函数的定义,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{({b}_{n}+2)}^{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设点P在曲线y=$\frac{1}{2}$x2上,从原点向A(2,2)移动,如果直线OP,曲线y=$\frac{1}{2}$x2及直线x=2所围成的阴影部分面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知梯形ABCD中,AB⊥AD,$\overrightarrow{AB}=3\overrightarrow{DC},cos∠DAC=\frac{{\sqrt{3}}}{2},\overrightarrow{BE}=m\overrightarrow{BC}$(0<m<1),若|$\overrightarrow{AE}$|2=$|{\overrightarrow{AC}}||{\overrightarrow{AB}}$|,则$\frac{CE}{CB}$=(  )
A.$\frac{1+\sqrt{15}}{7}$B.$\frac{1}{7}$C.$\frac{2}{3}$D.$\frac{2+\sqrt{15}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知△ABC,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,a,b,c分别为角A,B,C的对边,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,则角C的大小为(  )
A.15°B.75°C.15°或75°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.y=3sinx的值域是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)证明:数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,并求{an}的通项公式;
(2)若数列{bn}满足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若对一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算$C_5^4+C_6^4+C_7^4+C_8^4$等于(  )
A.125B.126C.120D.132

查看答案和解析>>

同步练习册答案