精英家教网 > 高中数学 > 题目详情
20.计算$C_5^4+C_6^4+C_7^4+C_8^4$等于(  )
A.125B.126C.120D.132

分析 利用组合数公式${C}_{n}^{m}$+${C}_{n}^{m-1}$=${C}_{n+1}^{m}$,计算即可.

解答 解:$C_5^4+C_6^4+C_7^4+C_8^4$
=(${C}_{5}^{5}$+${C}_{5}^{4}$)+${C}_{6}^{4}$+${C}_{7}^{4}$+${C}_{8}^{4}$-1
=${C}_{6}^{5}$+${C}_{6}^{4}$+${C}_{7}^{4}$+${C}_{8}^{4}$-1
=${C}_{7}^{5}$+${C}_{7}^{4}$+${C}_{8}^{4}$-1
=${C}_{8}^{5}$+${C}_{8}^{4}$-1
=${C}_{9}^{5}$-1
=126-1
=125.
故选:A.

点评 本题考查了组合数公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知角α的终边过点(m,9),且tanα=$\frac{3}{4}$,则sinα的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面下降1米后,拱桥内水面宽度是(  )
A.6$\sqrt{2}$米B.6$\sqrt{6}$米C.3$\sqrt{2}$米D.3$\sqrt{6}$米

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方形ABCD的边长为2,M,N分别是边AB,BC上的点,当△BMN的周长是4时,∠MDN的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+y2-4x-2y+4=0上的点到直线x-y=2的距离最大值是(  )
A.2B.$1+\sqrt{2}$C.$1+\frac{{\sqrt{2}}}{2}$D.$1+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求实数a的值及函数f(x)的单调区间;
(2)若b>0,f(x)≥(b-1)x+c,求b2c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=2an+1.
(Ⅰ)证明:{an+1}是等比数列,并求{an}的通项公式;
(Ⅱ)记${b_n}=\frac{1}{{{{[{{log}_2}({a_n}+1)]}^2}+{{log}_2}({a_n}+1)}}$,设Sn为数列{bn}的前项和,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.斜率为2的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:
①一次性缴纳50万元,可享受9折优惠;
②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.
请通过计算,帮助王亮同学判断那种方案交纳的保费较低.

查看答案和解析>>

同步练习册答案