| A. | 2 | B. | $1+\sqrt{2}$ | C. | $1+\frac{{\sqrt{2}}}{2}$ | D. | $1+2\sqrt{2}$ |
分析 把圆的方程化为标准方程后,找出圆心坐标和半径r,利用点到直线的距离公式求出圆心到已知直线的距离d,求出d+r即为所求的距离最大值.
解答 解:把圆的方程化为标准方程得:(x-2)2+(y-1)2=1,
所以圆心坐标为(2,1),圆的半径r=1,
所以圆心到直线x-y=2的距离d=$\frac{|2-1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
则圆上的点到直线x-y=2的距离最大值为d+r=$\frac{\sqrt{2}}{2}$+1.
故选:C.
点评 本题主要考查直线与圆的位置关系,当考查圆上的点到直线的距离问题,基本思路是:先求出圆心到直线的距离,最大值时,再加上半径,最小值时,再减去半径.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$ | D. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(log23)<f(log0.55)<f(a) | B. | f(log0.55)<f(log23)<f(a) | ||
| C. | f(a)<f(log23)<f(log0.55) | D. | f(a)<f(log0.55)<f(log23) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当a>1时,函数y=ax是增函数,因为2>l,所以函数y=2x是增函数.这种推理是合情推理 | |
| B. | 在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理 | |
| C. | 若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小 | |
| D. | $\int_{-1}^1{{x^3}dx=\frac{1}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | -20 | C. | 15 | D. | -15 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com