精英家教网 > 高中数学 > 题目详情
6.已知(1+2x)10=a0+a1x+a2x2+…a10x10,则$\frac{a_0}{2^0}+\frac{a_1}{2•2}+\frac{a_2}{{3•{2^2}}}+…+\frac{{{a_{10}}}}{{11•{2^{10}}}}$=$\frac{{2}^{11}}{11}$.

分析 把等式两边取定积分,再令x=$\frac{1}{2}$可得答案.

解答 解:由(1+2x)10=a0+a1x+a2x2+…a10x10,得${∫}_{0}^{1}$(1+2x)10dx=${∫}_{0}^{1}$(a0+a1x+a2x2+…a10x10)dx,
∴$\frac{(1+2x)^{11}}{11}$|${\;}_{0}^{1}$=(a0x+$\frac{1}{2}$a1x2+$\frac{1}{3}$a2x3+…+$\frac{1}{11}$a10x11)|${\;}_{0}^{1}$,
∴$\frac{(1+2x)^{11}}{11}$=a0x+$\frac{1}{2}$a1x2+$\frac{1}{3}$a2x3+…+$\frac{1}{11}$a10x11
∴$\frac{(1+2x)^{11}}{11x}$=a0+$\frac{1}{2}$a1x+$\frac{1}{3}$a2x2+…+$\frac{1}{11}$a10x10
令x=$\frac{1}{2}$,
∴$\frac{a_0}{2^0}+\frac{a_1}{2•2}+\frac{a_2}{{3•{2^2}}}+…+\frac{{{a_{10}}}}{{11•{2^{10}}}}$=$\frac{(1+2×\frac{1}{2})^{11}}{11×\frac{1}{2}}$=$\frac{{2}^{11}}{11}$,
故答案为:$\frac{{2}^{11}}{11}$

点评 本题考查了定积分的应用和二项式定理,考查了转化能力和运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列命题中的真命题是(  )
A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2
C.若a≥b,则a2≥b2D.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}满足a1=2,an+1=1-$\frac{2}{{a}_{n}+1}$,记数列{an}的前n项之积为Tn,则T2018=(  )
A.1B.2C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$-bx+2(a,b∈R)有极值,且在x=1处的切线与直线2x+2y+3=0垂直.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为2.若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在极坐标系中,点$A(2\;,\;\frac{π}{3})$到直线ρcosθ=2的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面下降1米后,拱桥内水面宽度是(  )
A.6$\sqrt{2}$米B.6$\sqrt{6}$米C.3$\sqrt{2}$米D.3$\sqrt{6}$米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,a1=1,则“a2=4”是“a3=16”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+y2-4x-2y+4=0上的点到直线x-y=2的距离最大值是(  )
A.2B.$1+\sqrt{2}$C.$1+\frac{{\sqrt{2}}}{2}$D.$1+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(1-i)z=2+3i(i为虚数单位),则复数z对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案