精英家教网 > 高中数学 > 题目详情
16.若复数z满足(1-i)z=2+3i(i为虚数单位),则复数z对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:∵(1-i)z=2+3i,
∴z=$\frac{2+3i}{1-i}=\frac{(2+3i)(1+i)}{(1-i)(1+i)}=-\frac{1}{2}+\frac{5}{2}i$,
则复数z对应点的坐标为($-\frac{1}{2},\frac{5}{2}$),在第二象限.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知(1+2x)10=a0+a1x+a2x2+…a10x10,则$\frac{a_0}{2^0}+\frac{a_1}{2•2}+\frac{a_2}{{3•{2^2}}}+…+\frac{{{a_{10}}}}{{11•{2^{10}}}}$=$\frac{{2}^{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=2|x-a|是定义在R上的偶函数,则下列不等关系正确的是(  )
A.f(log23)<f(log0.55)<f(a)B.f(log0.55)<f(log23)<f(a)
C.f(a)<f(log23)<f(log0.55)D.f(a)<f(log0.55)<f(log23)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>l,所以函数y=2x是增函数.这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小
D.$\int_{-1}^1{{x^3}dx=\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l:x+2y=0与圆C:(x-a)2+(y-b)2=10相切,且圆心C在直线l的上方,则ab的最大值为$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的终边过点A(3,4),则cos(π+2α)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,菱ABCD与四边形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M为CF的中点,AC∩BD=G.
(I)求证:GM∥平面CDE;
(II)求直线AM与平面ACE成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若二项式${(\sqrt{x}-\frac{1}{x})^n}$的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是(  )
A.20B.-20C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C1:(x+1)2+(y-1)2=4,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(  )
A.(x+2)2+(y-2)2=4B.(x-2)2+(y+2)2=4C.(x+2)2+(y+2)2=4D.(x-2)2+(y-2)2=4

查看答案和解析>>

同步练习册答案