精英家教网 > 高中数学 > 题目详情
17.设数列{an}满足a1=2,an+1=1-$\frac{2}{{a}_{n}+1}$,记数列{an}的前n项之积为Tn,则T2018=(  )
A.1B.2C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 依题意,数列{an}是以4为周期的函数数列,可求得a1•a2•a3•a4=a5•a6•a7•a8=…=a2013•a2014•a2015•a2016=1,从而可得答案.

解答 解:∵a1=2,an+1=1-$\frac{2}{{a}_{n}+1}$,
∴a2=$1-\frac{2}{2+1}$=$\frac{1}{3}$,a3=$1-\frac{2}{\frac{1}{3}+1}$=-$\frac{1}{2}$,a4=$1-\frac{2}{-\frac{1}{2}+1}$=-3,a5=$1-\frac{2}{-3+1}$=2,…
即an+4=an
∴数列{an}是以4为周期的函数,
又a1•a2•a3•a4=a5•a6•a7•a8=…=a2005•a2006•a2007•a2008=1,Tn为数列{an}的前n项之积,
∴T2018=(a1•a2•a3•a4)•(a5•a6•a7•a8)…(a2013•a2014•a2015•a2016)•a2017•a2018=a1•a2=$2×\frac{1}{3}$=$\frac{2}{3}$,
故选:D.

点评 本题考查数列的递推式的应用,突出考查数列的求和,分析得到数列{an}是以4为周期的函数数列,且a1•a2•a3•a4=1是关键,考查推理与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,A=120°,则B的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知△ABC,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$-1.
(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在区间[m,2m]上的最大值;
(3)证明:对?n∈N*,不等式ln(1+n)e<n+1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.y=3sinx的值域是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P(x0,y0)是$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})$图象上任一点,y=f(x)图象在P点处的切线的斜率不可能是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知(1+2x)10=a0+a1x+a2x2+…a10x10,则$\frac{a_0}{2^0}+\frac{a_1}{2•2}+\frac{a_2}{{3•{2^2}}}+…+\frac{{{a_{10}}}}{{11•{2^{10}}}}$=$\frac{{2}^{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=2|x-a|是定义在R上的偶函数,则下列不等关系正确的是(  )
A.f(log23)<f(log0.55)<f(a)B.f(log0.55)<f(log23)<f(a)
C.f(a)<f(log23)<f(log0.55)D.f(a)<f(log0.55)<f(log23)

查看答案和解析>>

同步练习册答案