分析 (1)求出函数的导数,利用切线方程,函数的极值,推出结果.
(2)利用函数的单调性以及函数的极小值是2,推出结果即可.
解答 解:(1)∵$f(x)=\frac{1}{3}{x^2}+a{x^2}-bx+2$,∴f'(x)=x2+2ax-b,
由题意,得f'(1)=1+2a-b=1,∴b=2a.①
∵f(x)有极值,故方程f'(x)=x2+2ax-b=0有两个不等实根,
∴△=4a2+4b>0,∴a2+b>0.②
由①②可得a2+2a>0,a<-2或a>0.
故实数a的取值范围是a∈(-∞,-2)∪(0,+∞).
(2)存在$a=-\frac{8}{3}$.
∵f'(x)=x2+2ax-2a.令f'(x)=0,${x_1}=-a-\sqrt{{a^2}+2a},{x_2}=-a+\sqrt{{a^2}+2a}$.f(x),f'(x)随x值的变化情况如下表:
| x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
| f'(x) | + | 0 | - | 0 | + |
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
点评 本题考查函数的导数的应用,函数的极值以及函数的单调性的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{π}{4},\frac{π}{2}})$ | B. | $({π,\frac{5π}{4}})$ | C. | $({\frac{5π}{4},\frac{3π}{2}})$ | D. | $({\frac{π}{2},\frac{3π}{4}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$ | D. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当a>1时,函数y=ax是增函数,因为2>l,所以函数y=2x是增函数.这种推理是合情推理 | |
| B. | 在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理 | |
| C. | 若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小 | |
| D. | $\int_{-1}^1{{x^3}dx=\frac{1}{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com