精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{1}{3}{x^3}+a{x^2}$-bx+2(a,b∈R)有极值,且在x=1处的切线与直线2x+2y+3=0垂直.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为2.若存在,求出实数a的值;若不存在,请说明理由.

分析 (1)求出函数的导数,利用切线方程,函数的极值,推出结果.
(2)利用函数的单调性以及函数的极小值是2,推出结果即可.

解答 解:(1)∵$f(x)=\frac{1}{3}{x^2}+a{x^2}-bx+2$,∴f'(x)=x2+2ax-b,
由题意,得f'(1)=1+2a-b=1,∴b=2a.①
∵f(x)有极值,故方程f'(x)=x2+2ax-b=0有两个不等实根,
∴△=4a2+4b>0,∴a2+b>0.②
由①②可得a2+2a>0,a<-2或a>0.
故实数a的取值范围是a∈(-∞,-2)∪(0,+∞).
(2)存在$a=-\frac{8}{3}$.
∵f'(x)=x2+2ax-2a.令f'(x)=0,${x_1}=-a-\sqrt{{a^2}+2a},{x_2}=-a+\sqrt{{a^2}+2a}$.f(x),f'(x)随x值的变化情况如下表:

x(-∞,x1x1(x1,x2x2(x2,+∞)
f'(x)+0-0+
f(x)极大值极小值
∴$f{(x)_{极小值}}=f({x_2})=\frac{1}{3}x_2^3+ax_2^2-2a{x_2}+2=2$,∴x2=0或$x_2^2+3a{x_2}-6a=0$.
若x2=0,即$-a+\sqrt{{a^2}+2a}=0$,则a=0(舍).
若$x_2^2+3a{x_2}-6a=0$,又f'(x2)=0,∴$x_2^2+2a{x_2}-2a=0$,∴ax2-4a=0,
∵a≠0,∴x2=4,∴$-a+\sqrt{{a^2}+2a}=4$,∴$a=-\frac{8}{3}<-2$.
∴存在实数$a=-\frac{8}{3}$,使得函数f(x)的极小值为2.

点评 本题考查函数的导数的应用,函数的极值以及函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知θ∈(0,2π),且sinθ<tanθ<cotθ,那么θ的取值范围是(  )
A.$({\frac{π}{4},\frac{π}{2}})$B.$({π,\frac{5π}{4}})$C.$({\frac{5π}{4},\frac{3π}{2}})$D.$({\frac{π}{2},\frac{3π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知△ABC,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.y=3sinx的值域是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P(x0,y0)是$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})$图象上任一点,y=f(x)图象在P点处的切线的斜率不可能是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)证明:数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,并求{an}的通项公式;
(2)若数列{bn}满足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若对一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知(1+2x)10=a0+a1x+a2x2+…a10x10,则$\frac{a_0}{2^0}+\frac{a_1}{2•2}+\frac{a_2}{{3•{2^2}}}+…+\frac{{{a_{10}}}}{{11•{2^{10}}}}$=$\frac{{2}^{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的不等式x2-mx<0的解集为{x|0<x<2},则m的值为(  )
A.1B.2C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>l,所以函数y=2x是增函数.这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小
D.$\int_{-1}^1{{x^3}dx=\frac{1}{2}}$

查看答案和解析>>

同步练习册答案