| A. | $\frac{1+\sqrt{15}}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{2+\sqrt{15}}{7}$ |
分析 建立坐标系,设$\frac{CE}{CB}=λ(0<λ<1)$,求出各向量的坐标,列方程解出λ.
解答
解:以A为原点,建立如图直角坐标系,依题意,∠DAC=30°,
不妨设DC=1,则$AD=\sqrt{3}$,AC=2,AB=3,
故$C(1,\sqrt{3}),B(3,0)$,故$\overrightarrow{CB}=(2,-\sqrt{3})$,则$|{\overrightarrow{CB}}|=\sqrt{7}$;
设$\frac{CE}{CB}=λ(0<λ<1)$,故$\overrightarrow{CE}=(2λ,-\sqrt{3}λ)$,故$E(2λ+1,\sqrt{3}-\sqrt{3}λ)$;
∵${|{\overrightarrow{AE}}|^2}=|{\overrightarrow{AC}}|•|{\overrightarrow{AB}}|$,∴${(2λ+1)^2}+{({\sqrt{3}-\sqrt{3}λ})^2}=2×3$,
即7λ2-2λ-2=0,解得$λ=\frac{{1+\sqrt{15}}}{7}$,
故选A.
点评 本题考查了平面向量的数量积运算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com