精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为 的等腰三角形.
(Ⅰ)求二面角P﹣AB﹣C的大小;
(Ⅱ)在线段AB上是否存在一点E,使平面PCE⊥平面PCD?若存在,请指出点E的位置并证明,若不存在请说明理由.

【答案】解:(Ⅰ)如图,设M,N分别是AB和CD的中点,连接PM,MN,PN∵PA=PB,M是AB的中点
∴PM⊥AB
又在正方形ABCD中有MN⊥AB
∴∠PMN为二面角P﹣AB﹣C的平面
,AB=2,M是AB的中点
∴PM=2
同理可得PN=2,又MN=2
∴△PMN是等边三角形,故∠PMN=60°
∴二面角P﹣AB﹣C为60°,
(Ⅱ)存在点E,使平面PCE⊥平面PCD,此时E为线段MB的中点.理由如下
如图,设E,F,G分别为MB,PN和PC的中点,连接MF,FG,EG,EC
由(Ⅰ)知△PMN是等边三角形,故MF⊥PN
∵CD⊥MN,CD⊥PN,MN∩PN=N
∴CD⊥平面PMN,故CD⊥MF
又CD∩PN=N
∴MF⊥平面PCD
∵F,G分别为PN和PC的中点
∴FG=∥
又E为线段MB的中点
∴FG=∥ME,故四边形EMFG为平行四边形
∴EG∥MF
∴EG⊥平面PCD
又EG平面PCE
∴平面PCE⊥平面PCD.

【解析】(Ⅰ)设M,N分别是AB和CD的中点,连接PM,MN,PN,推导出PM⊥AB,MN⊥AB,从而∠PMN为二面角P﹣AB﹣C的平面角,由此能求出二面角P﹣AB﹣C的大小.(Ⅱ)设E,F,G分别为MB,PN和PC的中点,连接MF,FG,EG,EC,推导出MF⊥PN,CD⊥MF,从而MF⊥平面PCD,推导出四边形EMFG为平行四边形,从而EG⊥平面PCD,由此得到存在点E,使平面PCE⊥平面PCD,此时E为线段MB的中点.
【考点精析】掌握平面与平面垂直的性质是解答本题的根本,需要知道两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是平面A1BC1内一动点,且满足|PD|+|PB1|=6,则点P的轨迹所形成的图形的面积是(
A.2π
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(t,t),点M是圆O1:x2+(y﹣1)2= 上的动点,点N是圆O2:(x﹣2)2+y2= 上的动点,则|PN|﹣|PM|的最大值是(
A.1
B. ﹣2
C.2+
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f ( x)=ax3+bx2+cx+d 的图象如图所示,则 的取值范围是(
A.(﹣ ?)
B.(﹣ ,1)
C.(﹣
D.(﹣ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B﹣CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b﹣8)x﹣a﹣ab,当x∈(﹣3,2)时,f(x)>0,当x∈(﹣∞,﹣3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集为R,求c的取值范围;
(3)当x>﹣1时,求y= 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为y=kx+b(其中k的值与b无关),圆M的方程为x2+y2﹣2x﹣4=0.
(1)如果不论k取何值,直线l与圆M总有两个不同的交点,求b的取值范围;
(2)b=1,l与圆交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下列程序框图运算,则输出的结果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x2﹣4x.
(1)求函数y=f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,4]上的最大值和最小值.

查看答案和解析>>

同步练习册答案