精英家教网 > 高中数学 > 题目详情
如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为的交点为.
(1)证明:的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.
(1)的中点;(2);(3).

试题分析:(1)利用面面平行来证明线线平行,则出现相似三角形,于是根据三角形相似即可得出,即的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为,则.先表示出,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,所以.设平面的法向量,再利用向量求出二面角.
(1)证:因为,
所以平面∥平面.从而平面与这两个平面的交线相互平行,即.
的对应边相互平行,于是.
所以,即的中点.
(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为,则.



所以

所以
.
(3)解法1如第(20)题图1,在中,作,垂足为,连接.又,所以平面,于是.
所以为平面与底面所成二面角的平面角.
因为,所以.
又因为梯形的面积为6,,所以.
于是.
故平面与底面所成二面角的大小为.
解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.

.因为,所以.
从而
所以.
设平面的法向量

所以.
又因为平面的法向量
所以
故平面与底面所成而面积的大小为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且.
时,证明:直线平面
是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱中,平面平面ABC,.
(1)求证:
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

Z轴上一点M到点A(1,0,2)与B(1,3,1)的距离相等,则M的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案