精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.
(1);(2).

试题分析:(1)连结,因为是菱形的中心,,以为坐标原点,的方向分别为轴、轴、轴的正方向,建立空间直角坐标系,根据题设条件写出的坐标,并设出点的坐标,根据空间两点间的距离公式和勾股定理列方程解出的值得到的长;.
(2)设平面的法向量为,平面PMC的法向量为,首先利用向量的数量积列方程求出向量的坐标,再利用向量的夹角公式求出,进而求出二面角的正弦值.
解:

(1)如图,连结,因为菱形,则,且,以为坐标原点,的方向分别为轴,轴,轴的正方向,建立空间直角坐标系
,故
所以
知,
从而,即
,则因为
,所以(舍去),即.
(2)由(1)知,,
设平面的法向量为,平面的法向量为
故可取
故可取
从而法向量的夹角的余弦值为
故所求二面角的正弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面的菱形,,点边的中点,交于点

(1)求证:
(2)若的大小;
(3)在(2)的条件下,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,定义点之间的“直角距离”为
到点的“直角距离”相等,其中实
满足,则所有满足条件的点的轨迹的长度之和为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k值是(  )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是(  )
A.平行B.相交
C.异面垂直D.异面不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则夹角θ的余弦值为(  )
A.0B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为的交点为.
(1)证明:的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.

查看答案和解析>>

同步练习册答案