【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
【答案】(1)
和AC的长度分别为750米和1500米(2)
万元
【解析】
试题(1)设
长为
米,
长为
米,依题意得
,即
,表示面积,利用基本不等式可得结论;(2)利用向量方法,将
表示为
,根据向量的数量积与模长的关系可得结果.
试题解析:(1)设
长为
米,
长为
米,依题意得
,
即
,
=
![]()
当且仅当
,即
时等号成立,
所以当
的面积最大时,
和AC的长度分别为750米和1500米
(2)在(1)的条件下,因为
.
由
得![]()
,
元
所以,建水上通道
还需要
万元.
解法二:在
中,
在
中,![]()
在
中,![]()
=
元
所以,建水上通道
还需要
万元.
解法三:以A为原点,以AB为
轴建立平面直角坐标系,则
,![]()
,即
,设
由
,求得
, 所以
所以,
元
所以,建水上通道
还需要
万元.
科目:高中数学 来源: 题型:
【题目】已知动圆
过定点
且与
轴相切,点
关于圆心
的对称点为
,点
的轨迹为
.
(1)求曲线
的方程;
(2)一条直线经过点
,且交曲线
于
、
两点,点
为直线
上的动点.
①求证:
不可能是钝角;
②是否存在这样的点
,使得
是正三角形?若存在,求点
的坐标:否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的两个焦点为
点
在双曲线C上.
(1)求双曲线C的方程;
(2)已知Q(0,2),P为双曲线C上的动点,点M满足
求动点M的轨迹方程;
(3)过点Q(0,2)的直线
与双曲线C相交于不同的两点E、F,若
求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于由有限个自然数组成的集合A,定义集合S(A)={a+b|a∈A,b∈A},记集合S(A)的元素个数为d(S(A)).定义变换T,变换T将集合A变换为集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n个元素,证明:“d(S(A))=2n-1”的充要条件是“集合A中的所有元素能组成公差不为0的等差数列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素个数最少的集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
过点
,
是抛物线
上异于点
的不同两点,且以线段
为直径的圆恒过点
.
(I)当点
与坐标原点
重合时,求直线
的方程;
(II)求证:直线
恒过定点,并求出这个定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点为
的坐标满足圆
方程
,且圆心
满足
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
、
两点,过
与
垂直的直线
交圆
于
、
两点,
为线段
中点,若
的面积
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”;如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比,已知椭圆
.
![]()
(1)若椭圆
,判断
与
相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且焦点在
轴上,短半轴长为
的椭圆
的标准方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围;
(3)如图:直线
与两个“相似椭圆”
和
分别交于点
和点
,试在椭圆
和椭圆
上分别作出点
和点
(非椭圆顶点),使
和
组成以
为相似比的两个相似三角形,写出具体作法.(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com