精英家教网 > 高中数学 > 题目详情
在空间中有一棱长为a的正四面体,其俯视图的面积的最大值为(  )
A、a2
B、
a2
2
C、
3
a2
4
D、
a2
4
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:首先想象一下,当正四面体绕着与平面平行的一条边转动时,不管怎么转动,投影的三角形的一个边始终是AB的投影,长度是1,而发生变化的是投影的高,体会高的变化,得到结果,投影面积最大应是线段AB相对的侧棱与投影面平行时取到.
解答: 解:由题意当线段AB相对的侧棱与投影面平行时投影最大,此时投影是关于线段AB对称的两个等腰三角形,
由于正四面体的棱长都是1,故投影面积为
1
2
×a×a=
a2
2

故选:B.
点评:本题考查平行投影及平行投影作图法,本题是一个计算投影面积的题目,注意解题过程中的投影图的变化情况,本题是一个中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l:
x=tcosα
y=1+tsinα
(t为参数)与圆C:
x=2+8cosθ
y=1+8sinθ
(θ为参数)相交所得的弦长的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg
1
x+3
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“直线l⊥平面α内的无数条直线”的充要条件是“l⊥α”,命题q:若平面α⊥平面β,直线a?β,则“a⊥α”是“a∥β”的充分不必要条件,则下列命题中正确的(  )
A、p∧qB、p∨¬q
C、¬p∧¬qD、¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F,且
OG
=4
OF
,其中O是坐标原点,以G为圆心且与抛物线C有且只有两个交点的圆的方程为(  )
A、x2+(y-2p)2=3p2
B、(x-2p)2+y2=3p2
C、x2+(y-2p)2=p2
D、(x-2p)2+y2=p2

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(  )
A、
352
3
cm3
B、
320
3
cm3
C、
224
3
cm3
D、
160
3
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
y-2≤0
x+3≥0
x-y-1≤0
,则
x+y-6
x-4
的取值范围是(  )
A、[0,
3
7
]
B、[0,
6
7
]
C、[1,
13
7
]
D、[2,
20
7
]

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x2
1+x4
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数x,函数f(x)=
mx2-4mx+m+3
都有意义,求m的取值范围.

查看答案和解析>>

同步练习册答案