【题目】若对于定义在上的函数,其图象是连续不断的,且存在常数使得对任意实数都成立,则称是一个“特征函数”.下列结论中正确的个数为( )
①是常数函数中唯一的“特征函数”;
②不是“特征函数”;
③“特征函数”至少有一个零点;
④是一个“特征函数”.
A.1B.2C.3D.4
【答案】C
【解析】
利用新定义“特征函数”,对选项逐个进行判定,即可求解,得到答案.
对于①中,设,当时,函数是一个“特征函数”,
所以不是唯一的一个常值的“特征函数”,所以①不正确;
对于②中,函数,
则,即,
当时,,
当时,方程由唯一的解,
所以不存在常数使得对任意实数都成立,
所以函数不是“特征函数”,所以②正确.
对于③中,令,可得,所以,
若,显然有实数根,若,,
又因为的函数图象是连续的,所以在上必由实数根,
因此任意的“特征函数”必有实根,即任意“特征函数”至少有一个零点,
所以③是正确;
对于④中,假设是一个“特征函数”,则对任意的实数成立,
则有,而此式有解,所以是“特征函数”,所以④正确的,
所以正确命题共有②③④.
故选:C.
科目:高中数学 来源: 题型:
【题目】设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程中仅有一个实根的是 ,(写出所有正确条件的编号)
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),其坐标满足条件:|x1x2+y1y2|﹣ 的最大值为0,则称f(x)为“柯西函数”, 则下列函数:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)= .
其中为“柯西函数”的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数发f(x)=(x+1)lnx﹣ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证: ,n∈N* .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点 (Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若直线PC与平面PAD所成角为45°,求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填;y的位置应填 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+b)+ex﹣1(a≠0).
(1)当a=﹣1,b=1时,判断函数f(x)的零点个数;
(2)若f(x)≤ex﹣1+x+1,求ab的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com