【题目】过点P(3,﹣4)作圆(x﹣1)2+y2=2的切线,切点分别为A,B,则直线AB的方程为( )
A.x+2y﹣2=0B.x﹣2y﹣1=0C.x﹣2y﹣2=0D.x+2y+2=0
科目:高中数学 来源: 题型:
【题目】已知
,
是离心率为
的椭圆
两焦点,若存在直线
,使得
,
关于
的对称点的连线恰好是圆
的一条直径.
(1)求椭圆
的方程;
(2)过椭圆
的上顶点
作斜率为
,
的两条直线
,
,两直线分别与椭圆交于
,
两点,当
时,直线
是否过定点?若是求出该定点,若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:![]()
的焦点为
,直线
与
轴的交点为
,与抛物线
的交点为
,且
.
(1)求抛物线
的方程;
(2)过抛物线
上一点
作两条互相垂直的弦
和
,试问直线
是否过定点,若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为自然对数的底数).
(1)若曲线
在点
(处的切线与曲线
在点
处的切线互相垂直,求函数
在区间
上的最大值;
(2)设函数
,试讨论函数
零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占
.
一次购物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顾客数(人) |
| 27 | 20 |
| 10 |
结算时间( | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)确定
,
的值,并求顾客一次购物的结算时间的平均值;
(2)从收集的结算时间不超过
的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为
的概率.(注:将频率视为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点
恰好是椭圆
的右焦点.
(1)求实数
的值及抛物线
的准线方程;
(2)过点
任作两条互相垂直的直线分别交抛物线
于
、
和
、
点,求两条弦的弦长之和
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
,点
为抛物线的焦点,焦点
到直线
的距离为
,焦点
到抛物线
的准线的距离为
,且
.
(1)求抛物线
的标准方程;
(2)若在
轴上存在点
,过点
的直线
分别与抛物线
相交于
,
两点,且
为定值,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com