精英家教网 > 高中数学 > 题目详情
求“方程(x+(x=1的解”有如下解题思路:设f(x)=(x+(x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为   
【答案】分析:类比求“方程(x+(x=1的解的解题思路,设f(x)=x3+x,利用导数研究f(x)在R上单调递增,从而根据原方程可得x2=x+2,解之即得方程x6+x2=(x+2)3+(x+2)的解集.
解答:解:类比上述解题思路,设f(x)=x3+x,由于f′(x)=3x2+1≥0,则f(x)在R上单调递增,
由x6+x2=(x+2)3+(x+2)即(x23+x2=(x+2)3+(x+2),
∴x2=x+2,
解之得,x=-1或x=2.
所以方程x6+x2=(x+2)3+(x+2)的解集为{-1,2}.
故答案为:{-1,2}.
点评:本题主要考查了类比推理,考查了导数与单调性的关系,函数单调性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
12
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求f(x)在区间[1,2]上的解析式;
(3)求方程f(x)=log10000x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx+a2(a,b∈R)
(1)若a∈{0,1,2,3},b∈{0,1,2,3},求方程f(x)=0有实数根的概率;
(2)若a从区间[0,3]内任取一个数,b从区间[0,2]内任取一个数,求方程f(x)=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象在y轴上的截距为1,在相邻最值点(x0,2),[x0+
3
2
,-2](x0>0)上f(x)分别取得最大值和最小值.
(1)求f(x)的解析式;
(2)求方程f(x)=a存在于[0,7/2]上的解的和,其中a为满足-2<a<2的已知常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)某同学在求方程lgx=2-x的近似解(精确到0.1)时,设f(x)=lgx+x-2,发现f(1)<0,f(2)>0,他用“二分法”又取了4个值,通过计算得到方程的近似解为x≈1.8,那么他所取的4个值中的第二个值为
1.75
1.75

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间[-
2
3
π,π]上的函数y=f(x)的图象关于直线x=
π
6
对称,当x∈[-
2
3
π,
π
6
]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其图象如图所示.

(Ⅰ)求函数y=f(x)在[-
2
3
π,π]的表达式;
(Ⅱ)求方程f(x)=
2
的解;
(Ⅲ)是否存在常数m的值,使得|f(x)-m|<2在x∈[-
3
,π]上恒成立;若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案