精英家教网 > 高中数学 > 题目详情
随机变量服从二项分布,且等于(    )
A.B.C.1D.0
B

试题分析:根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p. 解:∵ξ服从二项分布B~(n,p),Eξ=300,Dξ=200,∴Eξ=300=np,①;Dξ=200=np(1-p),②,两式比值可知1-p= 故可知p=,选B.
点评:本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

甲、乙两个排球队进行比赛采用五局三胜的规则,即先胜三局的队获胜,比赛到此也就结束,,甲队每局取胜的概率为0.6,则甲队3比1的胜乙队的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量,若,则的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列,并求李明在一年内领到驾照的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,为区间上的等分点,直线和曲线所围成的区域为,图中个矩形构成的阴影区域为,在中任取一点,则该点取自的概率等于     ________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量服从正态分布.若,则的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
 
8环
9环
10环

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率;
(Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.若第二局比赛结束时比赛停止的概率为
(1)求的值;
(2)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一名工人要看管三台机床,在一小时内机床不需要工人照顾的概率对于第一台是0.9,第二台是0.8,第三台是0.85,求在一小时的过程中不需要工人照顾的机床的台数X的数学期望(均值).

查看答案和解析>>

同步练习册答案