精英家教网 > 高中数学 > 题目详情
1.已知二项式(1-3x)n的展开式中,第3项和第5项的二项式系数相等,则这个展开式的第4项为-540x3

分析 根据第3项和第5项的二项式系数相等,求得 n=6,再利用二项展开式的通项公式求得这个展开式的第4项.

解答 解:二项式(1-3x)n的展开式中,∵第3项和第5项的二项式系数相等,
∴${C}_{n}^{2}$=${C}_{n}^{4}$,∴n=6,则这个展开式的第4项为${C}_{6}^{3}$•(-3x)3=-540x3
故答案为:-540x3

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设全集U={1,2,3,4,5,6},集合S={1,3,5},T={3,6},则∁U(S∪T)等于(  )
A.B.{4}C.{2,4}D.{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow m$=(1,2),$\overrightarrow n$=(a,-1),若($\overrightarrow m$+$\overrightarrow n$)⊥$\overrightarrow m$,则实数a的值为(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-1,2),若m$\overrightarrow a$+n$\overrightarrow b$与$\overrightarrow a$-3$\overrightarrow b$共线,则$\frac{m}{n}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p若对任意x>-1,不等式$\frac{{x}^{2}}{x+1}$≥a恒成立,q:方程ax2-ax+1=0有实数解.若p且q为假,p或q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某工厂2016年计划生产A、B两种不同产品,产品总数不超过300件,生产产品的总费用不超过9万元.A、B两个产品的生产成本分别为每件500元和每件200元,假定该工厂生产的A、B两种产品都能销售出去,A、B两种产品每件能给公司带来的收益分别为0.3万元和0.2万元.问该工厂如何分配A、B两种产品的生产数量,才能使工厂的收益最大?最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(3)设函数g(x)=-ax2+8(x-1)af(x)-5,a≥8时,存在最大实数t,使得x∈(1,t]时-5≤g(x)≤5恒成立,请写出t与a的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x∈R,cosx=2;命题q:?x∈R,x2-x+1>0,则下列结论中正确的是(  )
A.p∨q是假命题B.p∧q是真命题C.(¬p)∧(¬q)是真命题D.(¬p)∨(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知Sn+6=2an+2n(n∈N*).
(1)求证:数列{an-2}是等比数列;
(2)设bn=$\frac{n}{{a}_{n}-2}$,数列{bn}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

同步练习册答案