精英家教网 > 高中数学 > 题目详情
16.已知p若对任意x>-1,不等式$\frac{{x}^{2}}{x+1}$≥a恒成立,q:方程ax2-ax+1=0有实数解.若p且q为假,p或q为真,求实数a的取值范围.

分析 若P真,由题知:对任意x>-1,$\frac{{x}^{2}}{x+1}$=$\frac{(x+1)^{2}-2(x+1)+1}{x+1}$=(x+1)+$\frac{1}{x+1}$-2≥0,即可得出a的范围.若q真,则$\left\{\begin{array}{l}{a≠0}\\{△≥0}\end{array}\right.$,解得a范围.由p且q为假,p或q为真,得p,q中必有一真一假.

解答 解:若P真,由题知:对任意x>-1,$\frac{{x}^{2}}{x+1}$=$\frac{(x+1)^{2}-2(x+1)+1}{x+1}$=(x+1)+$\frac{1}{x+1}$-2≥0,∴a≤0.
若q真,则$\left\{\begin{array}{l}{a≠0}\\{△≥0}\end{array}\right.$,解得a<0或a≥4.
由p且q为假,p或q为真,得p,q中必有一真一假.
∴$\left\{\begin{array}{l}{a≤0}\\{0≤a<4}\end{array}\right.$或$\left\{\begin{array}{l}{a>0}\\{a<0或a≥4}\end{array}\right.$,
解得a=0,或a≥4.
综上所述,a的取值范围是a=0或a≥4.

点评 本题考查了基本不等式的性质、不等式的解法、一元二次方程有实数根的条件、简易逻辑的判断方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.化简(下列字母的取值范围均使根式有意义):
(1)a•$\sqrt{-\frac{1}{a}}$;(2)$\sqrt{-{a}^{3}{b}^{2}}$;(3)$\sqrt{\frac{{y}^{3}}{12{x}^{3}}}$(x<0);(4)$\sqrt{(a-3)^{2}}$+$\sqrt{(a+4)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知logxa=2,logxb=3,logxc=6,求logabcx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x,x<0}\end{array}\right.$,则f(3)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,反比例函数y=$\frac{2}{x}$的图象与一次函数f(x)的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求f(x)解析式.
(2)求C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知二项式(1-3x)n的展开式中,第3项和第5项的二项式系数相等,则这个展开式的第4项为-540x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为考察某种药物预防疾病的效果,进行动物试验得到如下数据的列联表:
患病未患病总计
没服用药203050
服用药xy50
总计30N100
设从没服药的动物中任取两只,未患病数为ζ;
(I)求出列联表中数据x,y,N的值及ζ的分布列;
(Ⅱ)能够以97.5%的把握认为药物有效吗?(参考数据如下)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合$A=\left\{{x|\frac{2x-1}{x+1}≤1,x∈R}\right\}$,集合B={x||x-a|≤1,x∈R}.
(1)求集合A;
(2)若B∩∁RA=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}满足a2=2,a5=8,则an=2n-2,Sn=n2-n.

查看答案和解析>>

同步练习册答案