精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:对任意实数x都有f(x)≥2x;且当0<x<2时,总有f(x)≤
1
2
(x+1)2
成立.
(1)求f(1)的值;
(2)求f(-1)的取值范围.
(1)∵对任意实数x都有f(x)≥2x,
∴f(1)≥2.
∵当0<x<2时,总有f(x)≤
1
2
(x+1)2
成立,
∴f(1)≤
1
2
(1+1)2=2

∴f(1)=2.(3分)
(2)∵f(1)=a+b+c=2,
对任意实数x都有f(x)≥2x,
即ax2+(b-2)x+c≥0恒成立,
a>0
(b-2)2-4ac≤0

∴b-2=-(a+c),
∴[-(a+c)]2-4ac≤0,
即(a-c)2≤0,
∴a=c>0,b=2-2a.(5分)
f(x)≤
1
2
(x+1)2

∴2f(x)≤(x+1)2
即2[ax2+(2-2a)x+a]≤(x+1)2
整理得 (2a-1)x2+(2-4a)x+2a-1≤0,
即(2a-1)(x-1)2≤0,
∵当0<x<2时,它恒成立,
∴0<a≤
1
2

∴f(-1)=a-b+c=4a-2的取值范围是(-2,0].(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案