精英家教网 > 高中数学 > 题目详情

某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

(Ⅰ)S
(Ⅱ)设计x=50米,y=60米时,运动场地面积最大,最大值为2430平方米. (13分)

解析试题分析:(Ⅰ)由已知="3000" , ,则(2分)
·=
(6分)
(Ⅱ)=3030-2×300=2430(10分)
当且仅当,即时,“”成立,此时  .
即设计x=50米,y=60米时,运动场地面积最大,最大值为2430平方米. (13分)
考点:本题考查了基本不等式的实际运用
点评:对于一些数学或实际问题,若能准确运用基本不等式加以求解,往往能带来事半功倍的效果

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,函数是R上的奇函数,当
(i)求实数的值;
(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且当时,
(1)写出函数的解析式;
(2)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数.
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件
①对任意,且
②对任意,都有。若存在,求出的值,若不存在,请说明理由。
(3)若对任意,试证明存在
使成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二次函数的图像顶点为,且图像在x轴上截得线段长为8
(1)求函数的解析式;
(2)令  
①若函数上是单调增函数,求实数的取值范围; 
②求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当 ,画出函数的图像,并求出函数的零点;
(2)设,且对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为:

(1)该水库的蓄水量小于50的时期称为枯水期,以表示第月份(),问:同一年内哪些月份是枯水期?
(2)求一年内哪个月份该水库的蓄水量最大,并求最大蓄水量。(取计算)

查看答案和解析>>

同步练习册答案