精英家教网 > 高中数学 > 题目详情

设函数
(1)当 ,画出函数的图像,并求出函数的零点;
(2)设,且对任意恒成立,求实数的取值范围.

(1).(2).

解析试题分析:(1), 2分
画图正确. 4分
时,由 ,得,此时无实根;
时,由,得,得.
所以函数的零点为. 6分
(2)由<0得,.
时,取任意实数,不等式恒成立. 8分
时,.令,则上单调递增 ,
; 10分
时,,令
上单调递减,所以上单调递减.
∴ . 12分  
综合. 14分
考点:本题主要考查分段函数的概念,二次函数的图象和性质,函数零点,不等式恒成立问题。
点评:中档题,含有绝对值,因此要分类讨论,转化成分段的二次函数的图象和性质研究问题。对于不等式恒成立问题,往往转化成求函数的最值,借助于函数的单调性得解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最
大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解方程(组):
(1)
(2)  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(1)          
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校期间所需的学费、住宿费及生活费。每一年度申请总额不超过6000元。某大学2012届毕业生凌霄在本科期间共申请了24000元助学贷款,并承诺毕业后3年(按36个月计)内还清。签约单位提供的工资标准为第一年内每月1500元,第13个月开始每月工资比前一个月增加5%直到4000元。凌霄同学计划前12个月每月还款500元,第13个月开始每月还款比前一个月多元.
(1)若凌霄同学恰好在第36个月(即毕业后3年)还清贷款,求值;(6分)
(2)当时,凌霄同学将在毕业后第几个月还清最后一笔贷款?他当月工资余额能否满足当月3000元的基本生活费?(6分)
(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表

运输工具
运输费单价:元/(吨•千米)
冷藏费单价:元/(吨•时)
固定费用:元/次
汽车
2
5
200
火车
1.6
5
2280
          
(1)汽车的速度为       千米/时,火车的速度为       千米/时:
(2)设每天用汽车和火车运输的总费用分别为(元)和(元),分别求的函数关系式(不必写出的取值范围),及为何值时(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知,若满足
(1)求实数的值;       (2)判断函数的单调性,并加以证明。

查看答案和解析>>

同步练习册答案