分析 推导出${a}_{n}={2}^{n-1}$,从而${{a}_{n}}^{2}={2}^{2n-2}={4}^{n-1}$,由此能求出$a_1^2+a_2^2+…+a_n^2$的值.
解答 解:∵等比数列{an}中,对任意自然数$n,{a_1}+{a_2}+…+{a_n}={2^n}-1$,
∴a1=2-1=1,
an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,n≥2,
n=1时,上式成立,
∴${a}_{n}={2}^{n-1}$,
∴${{a}_{n}}^{2}={2}^{2n-2}={4}^{n-1}$,
∴$a_1^2+a_2^2+…+a_n^2$=$\frac{1×(1-{4}^{n})}{1-4}$=$\frac{1}{3}({4}^{n}-1)$.
故答案为:$\frac{1}{3}$(4n-1).
点评 本题考查数列的前n项和的求法,是中档题,解题时要认真审,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2}{5}$ | C. | $\frac{5}{2}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{15}$ | B. | $3\frac{17}{30}$ | C. | $-8\frac{5}{6}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com