精英家教网 > 高中数学 > 题目详情
3.${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{\frac{1}{2}}}$=(  )
A.$\frac{16}{15}$B.$3\frac{17}{30}$C.$-8\frac{5}{6}$D.0

分析 利用分数指数幂的性质及运算法则求解.

解答 解:${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{\frac{1}{2}}}$
=1+$\frac{1}{4}$×$\frac{2}{3}$-0.1
=1+$\frac{1}{6}-\frac{1}{10}$
=$\frac{16}{15}$.
故选:A.

点评 本题考查有理数指数幂化简求值,是基础题,解题时要认真审题,注意分数指数幂的性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a}{x}$.
(1)讨论函数f(x)的单调性;
(2)当a=2时,且函数f(x)满足f(x1)=f(x2)(x1≠x2),求证x1+x2>4.
(参考公式:[ln(m-x)]'=$\frac{1}{x-m}$,m为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,在椭圆上的所有点到右焦点的距离的最大值为$\sqrt{2}$+1,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{2}$+y2=1B.$\frac{{x}^{2}}{4}$+y2=1C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M、N两点,若$|MN|=2\sqrt{3}$,则k等于(  )
A.0B.$-\frac{2}{3}$C.$-\frac{2}{3}或0$D.$-\frac{3}{4}或0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{3}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{7}$B.2$\sqrt{7}$C.6$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等比数列{an}中,已知对任意自然数$n,{a_1}+{a_2}+…+{a_n}={2^n}-1$,则$a_1^2+a_2^2+…+a_n^2$=$\frac{1}{3}({4^n}-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等比数列,且a1=1,a4=8.
(1)求数列{an}的通项公式;  
(2)设${b_n}=a_n^{\;}+n$,求数列{bn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,且满足a2+a4=-154,a7+a9=-114,则当Sn取得最小值时的n为(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面四个命题正确的是(  )
A.第一象限角必是锐角B.小于90°的角是锐角
C.若α>β,则sinα>sinβD.锐角必是第一象限角

查看答案和解析>>

同步练习册答案