精英家教网 > 高中数学 > 题目详情
11.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M、N两点,若$|MN|=2\sqrt{3}$,则k等于(  )
A.0B.$-\frac{2}{3}$C.$-\frac{2}{3}或0$D.$-\frac{3}{4}或0$

分析 求出圆的圆心与半径,求出弦心距,再利用弦长公式求得k的值.

解答 解:圆(x-3)2+(y-2)2=4的圆心为(3,2),半径为2,
当|MN|=2$\sqrt{3}$时,
圆心(3,2)到直线y=kx+3的距离为d=$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=1,
求得k=-$\frac{3}{4}$或0,
故选D.

点评 本题主要考查圆的标准方程,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数y=f (x)是定义在R上的偶函数,当x≤0时,y=f (x)是减函数,若|x1|<|x2|,则(  )
A.f (x1)-f (x2)<0B.f (x1)-f (x2)>0C.f (x1)+f (x2)<0D.f (x1)+f (x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=x2-2x的定义域为$[{-\frac{1}{3},\frac{11}{5}}]$,值域为[-1,$\frac{7}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)在其定义域(0,+∞),f(2)=1,且对任意正数x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(8)的值;
(2)若f(x)是定义域内的增函数,解关于x不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\{log_3}x,x>1\end{array}$,则f(3)+f(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{{-{2^x}+a}}{{{2^{x+1}}+2}}$(a为实常数)是奇函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{\frac{1}{2}}}$=(  )
A.$\frac{16}{15}$B.$3\frac{17}{30}$C.$-8\frac{5}{6}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.向量$\overrightarrow a=(1,1)$,且$\overrightarrow a$与$\overrightarrow a+\overrightarrow b$的方向相反,则$\overrightarrow a•\overrightarrow b$的取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设二次函数f(x)=Ax2+Bx+c,给定m、n(m<n),且满足A2[(m+n)2+m2n2]+2A[B(m+n)-Cmn]+B2+C2=0
①解不等式f(x)>0;
②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0?若不存在,说出理由;若存在,指出t的取值范围.

查看答案和解析>>

同步练习册答案