精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}的前n项和为Sn,且满足a2+a4=-154,a7+a9=-114,则当Sn取得最小值时的n为(  )
A.20B.21C.22D.23

分析 利用等差数列通项公式可得an,令an≤0,解得n即可得出.

解答 解:设等差数列{an}的公差为d,∵a2+a4=-154,a7+a9=-114,
∴2a1+4d=-154,2a1+14d=-114,
解得a1=-85,d=4.
∴an=-85+4(n-1)=4n-89,
令an=4n-89≤0,解得n≤22.
则当Sn取得最小值时的n为22.
故选:C.

点评 本题考查了等差数列的通项公式与求和公式、单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=x2-2x的定义域为$[{-\frac{1}{3},\frac{11}{5}}]$,值域为[-1,$\frac{7}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{\frac{1}{2}}}$=(  )
A.$\frac{16}{15}$B.$3\frac{17}{30}$C.$-8\frac{5}{6}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.向量$\overrightarrow a=(1,1)$,且$\overrightarrow a$与$\overrightarrow a+\overrightarrow b$的方向相反,则$\overrightarrow a•\overrightarrow b$的取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.试建立价格P与周次t之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(1)求证:AB1⊥BC1
(2)求AB的中点E到平面AB1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的公差d=-1,a1=2,则a6=(  )
A.-3B.3C.1D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设二次函数f(x)=Ax2+Bx+c,给定m、n(m<n),且满足A2[(m+n)2+m2n2]+2A[B(m+n)-Cmn]+B2+C2=0
①解不等式f(x)>0;
②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0?若不存在,说出理由;若存在,指出t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,两直线MA,MB分别与C1相交于点D,E.
①曲线C1,C2的方程分别为$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③若椭圆C1的左右顶点分别为P、Q两点,则kDP•kDQ=-$\frac{1}{4}$;
④记△MAB,△MDE的面积分别为S1,S2,则$\frac{{S}_{1}}{{S}_{2}}$的最大值为$\frac{25}{64}$.
以上列说法正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案